“Bringing the world into focus
through the lens of Scripture”

frosty@khouseafrica.com

 

 

 

K-House Africa

 

Banking Details

 

Radio 66/40

 

 

 

 Africa news

 

THE STRUGGLE FOR JERUSALEM

 

 

The Rise Of Islam

 

 

THE DECLINE OF THE USA

 

 

GLOBAL RELIGION

 

 

GLOBAL PESTILENCE

 

 

Global Government

 

 

THE RISE OF THE FAR EAST

 

 

THE RISE OF THE EUROPEAN SUPER STATE

 

 

WEAPONS PROLIFERATION

 

 

THE MAGOG INVASION

 

 

Space & Science

Classics

 

 

 

INTERNATIONAL NEWS FEEDS


 In The News provided by Koinonia House


Best viewed with Internet Explorer.


 

 

This page is dedicated to My Grandson Brandon.

(Branstein)

***IN STOCK***
 HOLOGRAPHIC

UNIVERSE

by Chuck Missler

DVD

PRICE R 159.00

 

 

 

 

This DVD includes notes in PDF format and M4A files.


This briefing pack contains 2 hours of teachings

Available in the following formats

Session 1

• Epistemology 101: How do we “know”?

– Scientific Myths of the Past

– Scientific Myths of the Present

• The Macrocosm: The Plasma Universe: Gravitational Presumption?

• The Microcosm: The Planck Wall

• The Metacosm: Fracture of Hyperspace?

Session 2


• The Holographic Model: David Bohm

• GEO 600 “Noise”

• The Black Hole Paradox

– String Theorists examine the elephant

• A Holographic Universe:

– Distances are synthetic (virtual) images

– A Geocentric Cosmology?

– Some Scriptural Perspective(s)

 

 

“One can’t believe impossible things,”

Alice laughed.

“I daresay you haven’t had much practice,”

said the Queen.

“When I was your age, I always did it for

half-an-hour a day.

Why, sometimes I’ve believed as many

as six impossible things before breakfast.”

Through the Looking Glass

Lewis Carroll (Charles Lutwidge Dodgson)
 

DVD:

1 Disc
2 M4A Files
Color, Fullscreen 16:9, Dolby Digital 2.0 stereo, Region  This DVD will be viewable in other countries WITH the proper DVD player and television set.)
 

M4A File Video

Can be burned to disc and played on MP4 compatible DVD players.
Playable on iPod, iPhone, iPod Touch
Playable on any MP4 player
1 PDF Notes File
2 MP3 Files


 

 

 

 

 

   

Featured Briefing

A Holographic Universe?

by Dr. Chuck Missler

Are we actually living in a holographic universe? Are the distant galaxies only a virtual illusion? In a hologram, distances are synthetic! How does this impact our concepts of time and space?

There seems to be growing evidence to suggest that our world and everything in it may be only ghostly images, projections from a level of reality so beyond our own that the real reality is literally beyond both space and time.1

The Cosmos As a Super-Hologram?

An initiating architect of this astonishing idea was one of the world’s most eminent thinkers: University of London physicist David Bohm, a protégé of Einstein’s and one of the world’s most respected quantum physicists. Bohm’s work in plasma physics in the 1950s is considered a landmark. Earlier, at the Lawrence Radiation Laboratory, he noticed that in plasmas (ionized gases) the particles stopped behaving as individuals and started behaving as if they were part of a larger and interconnected whole. Moving to Princeton University in 1947, there, too, he continued his work in the behavior of oceans of ionized particles, noting their highly organized overall effects and their behavior, as if they knew what each of the untold trillions of individual particles was doing.

One of the implications of Bohm’s view has to do with the nature of location. Bohm’s interpretation of quantum physics indicated that at the subquantum level location ceased to exist. All points in space become equal to all other points in space, and it was meaningless to speak of anything as being separate from anything else. Physicists call this property “nonlocality”. The web of subatomic particles that compose our physical universe—the very fabric of “reality” itself—possesses what appears to be an undeniable “holographic” property. Paul Davis of the University of Newcastle upon Tyne, England, observed that since all particles are continually interacting and separating, “the nonlocal aspects of quantum systems is therefore a general property of nature.”2

The Nature of Reality

One of Bohm’s most startling suggestions was that the tangible reality of our everyday lives is really a kind of illusion, like a holographic image. Underlying it is a deeper order of existence, a vast and more primary level of reality that gives birth to all the objects and appearances of our physical world in much the same way that a piece of holographic film gives birth to a hologram. Bohm calls this deeper level of reality the implicate (“enfolded”) order and he refers to our level of existence the explicate (unfolded) order.3 This view is not inconsistent with the Biblical presentation of the physical (“explicate”) world as being subordinate to the spiritual (“implicate”) world as the superior reality.4

The Search for Gravity Waves

Gravitational waves are extremely small ripples in the structure of spacetime caused by astrophysical events like supernovae or coalescing massive binaries (neutron stars, black holes). They had been predicted by Albert Einstein in 1916, but not yet directly observed.

GEO 600 is a gravitational wave detector located near Sarstedt, Germany, which seeks to detect gravitational waves by means of a laser interferometer of 600 meter arms’ length. This instrument, and its sister interferometric detectors, are some of the most sensitive gravitational wave detectors ever designed. They are designed to detect relative changes in distance of the order of 10-21, about the size of a single atom compared to the distance from the Earth to the Sun! Construction on the project began in 1995.

Mystery Noise

On January 15, 2009, it was reported in New Scientist that some yet unidentified noise that was present in the GEO 600 detector measurements might be because the instrument is sensitive to extremely small quantum fluctuations of space-time affecting the positions of parts of the detector. This claim was made by Craig Hogan, a scientist from Fermilab, on the basis of his theory of how such fluctuations should occur motivated by the holographic principle.5 Apparently, the gravitational wave detector in Hannover may have detected evidence for a holographic Universe!

Gravitational Wave Observatories Join Forces

A number of major projects will now pool their data to analyze it, jointly boosting their chances of spotting a faint signal that might otherwise be hidden by detector noise. Using lasers, they measure the length between mirrored test masses hung inside tunnels at right angles to each other. Gravitational waves decrease the distance between the masses in one tunnel and increase it in the other by a tiny, but detectable amount. Combining the data will also make it possible to triangulate to find the source of any gravitational waves detected. These include: Laser Interferometer Gravitational Observatory based in Hanford, Washington and Livingston, Louisiana; Virgo Observatory, Pisa Italy; and, of course, the GEO 600 Observatory near Hanover, Germany.

The most ambitious of them is the Laser Interferometer Space Antenna (LISA), a joint mission between NASA and the European Space Agency to develop and operate a space-based gravitational wave detector sensitive at frequencies between 0.03 mHz and 0.1 Hz. LISA seeks to detect gravitational-wave induced strains in space-time by measuring changes of the separation between fiducial masses in three spacecraft 5 million kilometers apart.

Cosmic Implications

Are we actually living in a holographic universe? Are the distant galaxies only a virtual illusion? In a hologram, distances are synthetic! How does this impact our concepts of time and space?

It gets even worse: Could our universe be geocentric? The implications are too staggering to embrace. The holographic paradigm is still a developing concept and riddled with controversies. For decades, science has chosen to ignore evidences that do not fit their standard theories. However, the volume of evidence has now reached the point that denial is no longer a viable option.

Clearly, 20th-century science has discovered that our “macrocosm”—studies of largeness—is finite, not infinite. Our universe is finite and had a beginning, and that’s what has led to the “big bang” speculations. We also realize that gravity is dramatically eclipsed by electromagnetic considerations when dealing with galaxies, etc. The plasma physicists have been trying to tell astronomers that for decades but no one was listening.

What is even more shocking has been the discoveries in the “microcosm”—studies of smallness—that run up against the “Planck Wall” of the non-location of subatomic particles, and the many strange paradoxes of quantum physics. We now discover that we are in a virtual reality that is a digital, simulated environment. The bizarre realization that the “constants” of physics are changing indicates that our “reality” is “but a shadow of a larger reality,”6 and that’s what the Bible has maintained all along!7

The Bible is, of course, unique in that it has always presented a universe of more than three dimensions,8 and revealed a Creator that is transcendent over His creation. It is the only “holy book” that demonstrates these contemporary insights. It’s time for us to spend more time with the handbook that the Creator has handed to us. It is the ultimate adventure, indeed!

For background information on the Holographic Universe, see our briefing series, The Beyond Collection, available on DVD and other formats, in the Christmas catalog insert in this issue.


Notes

  1. We explore the limitations of the Macrocosm, the Microcosm, and the super-embracing “Metacosm” in our Beyond Series.
  2. Paul Davis, Superforce, Simon & Schuster, New York, 1948, p.48.
  3. This is reminiscent of the Red King’s dream in Through the Looking Glass, in which Alice finds herself in deep metaphysical waters when the Tweedle brothers defend the view that all material objects, including ourselves, are only “sorts of things” in the mind of God.
  4. 2 Corinthians 4:18.
  5. Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. (Craig Hogan was then put in charge…)
  6. Scientific American, June 2005, “The Inconstancy of Constants”.
  7. Hebrews 11:3; John 1:1-3; et al.
  8. Ephesians 3:18. Nachmonides, writing in the 13th century, concluded, from his studies of the Genesis texts, that our universe has ten dimensions, of which only four are directly “knowable”.
 
 

The Physics of Immortality

DVD


by Dr. Chuck Missler

Price R 249.00

 

 

The Physics of Immortality

 This is an intensive review of what the Apostle Paul calls the most important chapter in the Bible: 1 Corinthians 15. Without it, “we are of all men most miserable.”
Did Jesus really rise from the dead? How do we know? Do we really believe it?
What kind of body did He have? Why did they have trouble recognizing Him?
How do we now know that we live within a digital virtual environment which is but “a shadow of a larger reality”? What are the implications of that “larger reality”? What is the relationship between “the twinkling of an eye” and Planck’s Constant for time (1043 seconds)?
Do you have your passport for the transit that’s coming? Are you really ready?
Join Dr. Chuck Missler in the Executive Briefing Room of the River Lodge, New Zealand, as he examines the physics of immortality.
This briefing pack contains 2 hours of teachings
Available in the following formats:
 DVD:
•1 Disc
•2 MP3 Files
•1 PDF Notes File
 

Published on Jan 28, 2015

Chuck Missler had the opportunity to sit discuss Zero Point Energy (ZPE) with Barry Setterfield 
 

Space News from SpaceDaily.com

 

 

Space News From SpaceDaily.Com

 

 

SSTL expands LEO platform capability with VESTA nanosatellite

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Guildford UK (SPX) Jul 22, 2016
Surrey Satellite Technology Ltd (SSTL) has signed a contract with Honeywell to supply the VESTA satellite platform, a technology demonstration mission that will test a new two-way VHF Data Exchange System (VDES) payload for the exactEarth advanced maritime satellite constellation. The contract was signed as part of an MOU between Honeywell Aerospace and the UK Space Agency. John Paffett, S
 

NASA completes first shell buckling tests with a bang

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Huntsville AL (SPX) Jul 22, 2016
How do you learn how to build stronger, lighter rockets and spacecraft structures? Come up with a totally new design, use an innovative material, build the rocket part and then break it. That's exactly how engineers not only learn how a structure will perform during one test, but also learn how to use high-tech models to predict how a structure will perform before it ever gets to the launch pad.
 

Atmospheric chemistry on paper

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Bern, Switzerland (SPX) Jul 22, 2016
Normally computers speed up calculations. But with his new pen-and-paper formula Kevin Heng of the University of Bern gets his results thousands of times faster than using conventional computer codes. The astrophysicist calculates the abundances of molecules (known as atmospheric chemistry) in exoplanetary atmospheres. Ultimately, deciphering the abundances of molecules allows us to interpret if
 

PACE will help uncover new information about health of our oceans

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Greenbelt MD (SPX) Jul 21, 2016
NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission is a first-of-its-kind project that aims to answer key questions about the consequences of climate change on the health of our oceans and their relationship with airborne particles and clouds. PACE will use a wide spectrum of wavelengths from an "ocean color" instrument to provide scientists with this information. "PACE repres
 

Active tracking of astronaut rad-exposures targeted

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Paris (ESA) Jul 22, 2016
Radiation is an invisible hazard of spaceflight, but a new monitoring system for ESA astronauts gives a realtime snapshot of their exposure. The results will guide researchers preparing for deep-space missions to come. A key element of the new system launched to orbit with Monday's Falcon 9 launch to the International Space Station, ensuring it is in place for ESA astronaut Thomas Pesquet'
 

GPS jamming: Keeping ships on the 'strait' and narrow

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Nottingham UK (SPX) Jul 22, 2016
The University of Nottingham and Royal Norwegian Naval Academy (RNoNA) are investigating how to prevent shipping Global Positioning Signals (GPS) being jammed in potential cyberattacks that may cause vessels to go off course and collide or run aground. Big, modern ships are highly automated with networked navigational systems, including differential GPS (DGPS) which offers more accurate po
 

BepiColombo Mission to Mercury on Track for April 2018 Launch

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Los Angeles CA (SPX) Jul 22, 2016
Humanity's next visitor to the solar system's innermost planet remains on track for April 2018, according to the project's scientist. The BepiColombo mission, being developed jointly by the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA), is currently ahead of its final acceptance tests that will prepare it for shipment to the launch site. "BepiColombo is on t
 

Commission approves acquisition of Arianespace by ASL, subject to conditions

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
European Commission
Brussels, Belgium (SPX) Jul 22, 2016 Following an in-depth review, the European Commission has approved under the EU Merger Regulation, the acquisition of Arianespace by Airbus Safran Launchers (ASL), a joint venture between Airbus and Safran. This approval is subject to conditions. Commissioner Margrethe Vestager, in charge of competition policy, said: "A well-functioning satellite and l
 

NASA Mars Rover Can Choose Laser Targets on Its Own

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Pasadena CA (JPL) Jul 22, 2016
NASA's Mars rover Curiosity is now selecting rock targets for its laser spectrometer - the first time autonomous target selection is available for an instrument of this kind on any robotic planetary mission. Using software developed at NASA's Jet Propulsion Laboratory, Pasadena, California, Curiosity is now frequently choosing multiple targets per week for a laser and a telescopic camera t
 

Garvey acquisition brings 16 years of launch vehicle development to Vector

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Tucson AZ (SPX) Jul 22, 2016
Vector Space Systems, a micro satellite space launch company comprised of new-space industry veterans from SpaceX, Virgin Galactic, McDonnell Douglas and Sea Launch, today announced it has finalized the acquisition of Garvey Spacecraft Corporation. As part of the acquisition, Garvey Spacecraft Corporation Founder and CEO John Garvey joins Vector Space Systems as Chief Technology Officer. F
 

For ancient deep-sea plankton, a long decline before extinction

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Buffalo NY (SPX) Jul 21, 2016
A new study of nearly 22,000 fossils finds that ancient plankton communities began changing in important ways as much as 400,000 years before massive die-offs ensued during the first of Earth's five great extinctions. The research, published July 18 in the Early Edition of the Proceedings of the National Academy of Sciences, focused on large zooplankton called graptolites. It suggests that
 

Huge time-lag between erosion and mountain building

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Potsdam, Germany (SPX) Jul 21, 2016
An unprecedented record of erosion rates dating back millions of years shows a significant time-lag between tectonic uplift and maximum erosion rates in the Argentine Precordillera mountains. According to a new study by an international team of scientists, tectonic shortening and exhumation of rocks peaked between twelve and nine million years ago whereas the maximum erosional response is detect
 

U.S. Army delivers Q-36 Firefinder radar to Ukrainian military

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Washington (UPI) Jul 21, 2016
The U.S. Army delivered AN-TPQ-36 Firefinder radar systems to the Ukrainian military, the service's Security Assistance Command said Wednesday. The delivery took place July 2, the Army said in a statement. The Q-36 radar, with its early detection capability, will help defend against rocket, mortar and artillery attacks, "a constant and lethal threat to military personnel and civi
 

A full-filling approach to making nanotubes of consistent quality

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Washington DC (SPX) Jul 19, 2016
Just as many of us might be resigned to clogged salt shakers or rush-hour traffic, those working to exploit the special properties of carbon nanotubes have typically shrugged their shoulders when these tiniest of cylinders fill with water during processing. But for nanotube practitioners who have reached their Popeye threshold and "can't stands no more," the National Institute of Standards
 

WSU researchers determine key improvement for fuel cells

 
‎Yesterday, ‎July ‎22, ‎2016, ‏‎8:58:56 AMGo to full article
Pullman WA (SPX) Jul 19, 2016
Washington State University researchers have determined a key step in improving solid oxide fuel cells (SOFCs), a promising clean energy technology that has struggled to gain wide acceptance in the marketplace. The researchers determined a way to improve one of the primary failure points for the fuel cell, overcoming key issues that have hindered its acceptance. Their work is featured on t
 

Directed Energy invites public to participate in Voices of Humanity

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Berkeley CA (SPX) Jul 21, 2016
For the first time ever, individuals will have the opportunity to send their own personal message and/or data into space via microchip. The project entitled "Voices of Humanity" is the creation of the Santa Barbara-based team of UCSB Physics Professor Phil Lubin, Ph.D. and Travis Brashears, an engineering physics major at U.C. Berkeley. Philip Lubin, a professor in physics at the University o
 

SpaceX cargo ship arrives at space station

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Miami (AFP) July 20, 2016
SpaceX's unmanned Dragon cargo ship arrived Wednesday at the International Space Station, carrying nearly 2.5 tons of gear and supplies for the astronauts living in orbit, NASA said. US space agency astronauts Jeff Williams and Kate Rubins reached out and grabbed the spacecraft, using the space station's 57.7-foot (17.5 meter) long robotic arm known as the Canadarm2, at 6:56 am (1056 GMT).
 

NASA's Viking Data Lives on, Inspires 40 Years Later

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Washington DC (SPX) Jul 21, 2016
Forty years ago, NASA's Viking mission made history when it became the first mission to successfully land a fully operational spacecraft on Mars. This mission gave us our first real look at the Martian surface, as well as the fundamental science that has enabled continued missions to the Red Planet, laying the foundation for NASA's Journey to Mars. The spacecraft, dubbed Viking 1, touched
 

Opportunity Rover wrapping up work within Marathon Valley

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Pasadena CA (JPL) Jul 21, 2016
Opportunity is exploring 'Marathon Valley' on the rim of Endeavour crater, investigating outcrops for evidence of clay minerals. The rover is nearing the completion of its exploration within Marathon Valley. On Sol 4426 (July 6, 2016), Opportunity drove 51 feet (15.45 meters) to the northwest. As with each drive, the rover collects post-drive Navigation Camera (Navcam) panoramas to s
 

X marks the spot at the center of the Milky Way galaxy

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Toronto, Canada (SPX) Jul 21, 2016
Two astronomers - with the help of Twitter - have uncovered the strongest evidence yet that an enormous X-shaped structure made of stars lies within the central bulge of the Milky Way Galaxy. Previous computer models, observations of other galaxies, and observations of our own galaxy have suggested that the X-shaped structure existed. But no one had observed it directly; and some astronome
 

Russian and US engineers plan manned moon mission

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Moscow (Sputnik) Jul 21, 2016
Engineers in Russia and the US are completing a plan for a collaborative space program. The initiative would preserve the multinational alliance developed when the International Space Station (ISS) was initiated in 1993. Both American and Russian organizations are considering ways to return to space together, as long as the political relationship between the two nations doesn't deteriorate
 

NASA to Begin Testing Next Generation of Spacecraft Heat Exchangers

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Washington DC (SPX) Jul 21, 2016
Crew members aboard the International Space Station (ISS) are receiving a unique hardware delivery today that can help shape NASA's human journey beyond Earth and into deep space. The Phase Change Material Heat Exchanger (PCM HX) Demonstration Facility hitched a ride to the space station on SpaceX's Dragon cargo craft, which launched July 18 on a Falcon 9 rocket from Cape Canaveral Air For
 

Asteroid that formed moon's Imbrium Basin may have been protoplanet-sized

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Providence RI (SPX) Jul 21, 2016
Around 3.8 billion years ago, an asteroid more than 150 miles across, roughly equal to the length of New Jersey, slammed into the Moon and created the Imbrium Basin - the right eye of the fabled Man in the Moon. This new size estimate, published in the journal Nature, suggests an Imbrium impactor that was two times larger in diameter and 10 times more massive than previous estimates. "We s
 

First atmospheric study of Earth-sized exoplanets reveals rocky worlds

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Boston MA (SPX) Jul 21, 2016
On May 2, scientists from MIT, the University of Liege, and elsewhere announced they had discovered a planetary system, a mere 40 light years from Earth, that hosts three potentially habitable, Earth-sized worlds. Judging from the size and temperature of the planets, the researchers determined that regions of each planet may be suitable for life. Now, in a paper published in Nature, that s
 

Feature: ET, when will we see you

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Beijing (XNA) Jul 21, 2016
Are we alone? Scientists say they are on the cusp of answering the age-old question about extraterrestrial (ET) life. "We are lucky to be in a special era, with the next generation of giant telescopes on the way. There may be some exciting discoveries in the following 10 to 20 years," says Mao Shude, director of the Center for Astrophysics of the Beijing-based Tsinghua University. Ac
 

China's satnav industry grows 29 pct in 2015

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Beijing (XNA) Jul 21, 2016
The output value of China's satellite navigation and location-based service industry grew 29.2 percent year on year in 2015, with the country's self-developed BeiDou Navigation Satellite System making a big contribution, according to a white paper. The output value reached 173.5 billion yuan (26 billion U.S. dollars), nearly 20 percent of it from the BeiDou application, showed the white pa
 

Russia to deploy latest air defence systems in Crimea

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Moscow (AFP) July 15, 2016
Russia will deploy its most advanced S-400 air defence systems to the annexed Crimea peninsula in August, a military official said Friday. Russia is currently using its older S-300 systems on the peninsula it annexed from Ukraine in March 2014 in a move condemned by the West that led to the imposition of US and EU sanctions. "In August 2016 the (S-400) systems are expected to be unloade
 

N. Korea says missile tests simulated nuclear strike on South

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Seoul (AFP) July 20, 2016
North Korea said Wednesday its latest ballistic missile tests trialled detonation devices for possible nuclear strikes on US targets in South Korea and were personally monitored by supreme leader Kim Jong-Un. Tuesday's test firing of three missiles in violation of existing UN resolutions was seen as an angry reaction to the planned deployment of a US missile defence system in the South.
 

Raytheon, Kongsberg to produce Naval Strike Missile in U.S.

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
London (UPI) Jul 13, 2016
Raytheon and Kongsberg are finalizing plans to assemble, integrate and test the Naval Strike Missile in the United States, Raytheon announced Wednesday. The companies also plan to produce the missile's launchers in the United States, Raytheon said in a statement. Raytheon plans to perform final assembly, integration and testing at the company's Tucson, Ariz., facility, with launc
 

The pains and strains of a continental breakup

 
‎Thursday, ‎July ‎21, ‎2016, ‏‎4:07:02 AMGo to full article
Sydney, Australia (SPX) Jul 19, 2016
Every now and then in Earth's history, a pair of continents draws close enough to form one. There comes a time, however, when they must inevitably part ways. Now scientists at Australia's EarthByte research group, in collaboration with the German Research Centre for Geosciences, have revealed the underlying mechanics of a continental breakup when this time arrives in a supercontinent's lif
 

SpaceX to launch key 'parking spot' to space station

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Miami (AFP) July 17, 2016
SpaceX is poised to launch its unmanned Dragon cargo capsule to the International Space Station on Monday, carrying a key piece of equipment that was lost last year in a rocket explosion. The international docking adapter will function as a parking spot for space taxis, enabling commercial spaceships carrying astronauts to latch on securely to the orbiting outpost. It is the first of two
 

Russia launches ISS-bound cargo ship

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Moscow (AFP) July 17, 2016
A Russian rocket carrying an unmanned cargo ship blasted off for the International Space Station early Sunday from the Baikonur cosmodrome in Kazakhstan, the Russian space agency said. The Soyuz rocket carrying the Progress MS-03 ship was launched on schedule at 00:41 Moscow time (21:41 GMT Saturday) and began a two-day journey to the ISS, the Roscosmos space agency said on its website.
 

Building a Commercial Market in Low Earth Orbit

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Washington DC (SPX) Jul 14, 2016
This April marked the sixth anniversary of President Obama's landmark address on space policy at NASA's Kennedy Space Center in Florida. In his speech, the President set out the goal of sending American astronauts to Mars in the 2030s, using a strategy that encourages innovation and entrepreneurship in space exploration through investments in new space technologies and partnerships with the priv
 

China's second space lab Tiangong-2 reaches launch center

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Jiuquan (XNA) Jul 14, 2016
China's second orbiting space lab Tiangong-2, which may enable two astronauts to live in space for up to 30 days, has been delivered to Jiuquan Satellite Launch Center. The lab was sent from Beijing Thursday by railway and reached the launch center Saturday, marking the start of the Tiangong-2 and Shenzhou-11 manned spacecraft missions, said a statement issued by China's manned space engin
 

Setting a satellite to catch a satellite

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Paris (ESA) Jul 12, 2016
The target is set: a large derelict satellite currently silently tumbling its way through low orbit. If all goes to plan, in 2023 it will vanish - and efforts against space debris will have made a giant leap forward. That is the vision underpinning e.Deorbit, intended as the world's first mission to remove a large piece of space junk - if it is given the initial go-ahead by Europe's space
 

A Peek Inside SLS: Fuel Tank For World's Largest Rocket Nears Completion

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
New Orleans LA (SPX) Jul 12, 2016
While this may look like a futuristic tunnel to another world, it is really looking up inside a nearly complete fuel tank for NASA's powerful, new rocket-the Space Launch System-that will take humans to destinations never explored by people before. At over 300-feet tall and 5.75 million pounds at liftoff, SLS needs plenty of fuel to leave Earth. Once a final dome is added to the liquid hyd
 

If life can make it here, it can make it anywhere

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Pullman WA (SPX) Jul 14, 2016
If the origin of life is common on other worlds, the universe should be a cosmic zoo full of complex multicellular organisms. Dirk Schulze-Makuch, a Washington State University astrobiologist, uses the evolution of Earth life as a model to predict what humans might find living on distant planets and moons in a new paper published in the journal Life. The results of his work, conducted in c
 

New Distant Dwarf Planet Beyond Neptune

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Waimea HI (SPX) Jul 14, 2016
An international team of astronomers have discovered a new dwarf planet orbiting in the disk of small icy worlds beyond Neptune. The new object is roughly 700 kilometers in size and has one of the largest orbits for a dwarf planet. Designated 2015 RR245 by the International Astronomical Union's Minor Planet Center, it was found using the Canada-France-Hawaii Telescope on Maunakea, Hawaii, as par
 

How a NASA Engineer Created the Modern Airplane Wing

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Hampton VA (SPX) Jul 13, 2016
Once dubbed "the man who could see air," NASA engineer Richard T. Whitcomb used a combination of visualization and intuition to revolutionize modern aviation - by turning the shape of the airplane wing on its head. For decades, Whitcomb had been working on getting aircraft to move faster and more efficiently. By the time he was 34, he had already won the most prestigious honor in aviation,
 

Behind the scenes of protostellar disk formation

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Munich, Germany (SPX) Jul 14, 2016
For a long time the formation of protostellar disks - a prerequisite to the formation of planetary system around stars - has defied theoretical astrophysicists: In a dense, collapsing cloud of gas and dust, the magnetic field would be dragged to the centre as well resulting in a braking effect. Hardly any rotationally supported disk can form this way, unless the tiny grains are removed fro
 

Surprise: Small elliptical galaxy actually a giant disk

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Pasadena CA (SPX) Jul 14, 2016
Astronomers have believed since the 1960s that a galaxy dubbed UGC 1382 was a relatively boring, small elliptical galaxy. Ellipticals are the most common type of galaxy and lack the spiral structure of disks like the Milky Way we call home. Now, using a series of multi-wavelength surveys, astronomers, including Carnegie's Mark Seibert, Barry Madore and Jeff Rich, have discovered that it is reall
 

Hordes of Low-Mass Objects in the Orion Nebula

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Munich, Germany (SPX) Jul 14, 2016
ESO's HAWK-I infrared instrument on the Very Large Telescope (VLT) in Chile has been used to peer deeper into the heart of Orion Nebula than ever before. The spectacular picture reveals about ten times as many brown dwarfs and isolated planetary-mass objects than were previously known. This discovery poses challenges for the widely accepted scenario for Orion's star formation history. An i
 

NASA camera catches moon 'photobombing' Earth

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Greenbelt MD (SPX) Jul 14, 2016
For only the second time in a year, a NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a view of the moon as it moved in front of the sunlit side of Earth. "For the second time in the life of DSCOVR, the moon moved between the spacecraft and Earth," said Adam Szabo, DSCOVR project scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The
 

The debut of a robotic stingray, powered by light-activated rat cells

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Washington DC (SPX) Jul 11, 2016
Researchers have created a robotic mimic of a stingray that's powered and guided by light-sensitive rat heart cells. The work exhibits a new method for building bio-inspired robots by means of tissue engineering. Batoid fish, which include stingrays, are distinguished by their flat bodies and long, wing-like fins that extend from their heads. These fins move in energy-efficient waves that
 

Swedish AF Gripens now carry Meteor missiles

 
‎Sunday, ‎July ‎17, ‎2016, ‏‎2:15:23 PMGo to full article
Farnborough, England (UPI) Jul 11, 2016
MBDA's Meteor Beyond Visual Range Air-to-Air Missile has achieved initial operating capability aboard Swedish air force Gripen fighters. Swedish company Saab, maker of the Gripen, together with the Swedish air force and Sweden's Defense Materiel Administration said the weapon upgrade, known as MS20, is the latest step in Gripen's process of constant capability expansion. "After e
 

Lush Venus? Searing Earth? It could have happened

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Houston TX (SPX) Jul 07, 2016
If conditions had been just a little different an eon ago, there might be plentiful life on Venus and none on Earth. The idea isn't so far-fetched, according to a hypothesis by Rice University scientists and their colleagues who published their thoughts on life-sustaining planets, the planets' histories and the possibility of finding more in Astrobiology this month. The researchers maintai
 

Curiosity Mars Rover Enters Precautionary Safe Mode

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Pasadena CA (JPL) Jul 07, 2016
The team operating NASA's Curiosity Mars rover is taking steps to return the rover to full activity following a precautionary stand-down over the Fourth of July weekend. Curiosity is now communicating with ground controllers and is stable. The rover put itself into safe mode on July 2, ceasing most activities other than keeping itself healthy and following a prescribed sequence for resumin
 

Scientists' Innovation Began With 'Wanting to Understand Why'

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Kennedy Space Center FL (SPX) Jul 07, 2016
NASA's Journey to Mars will require groundbreaking technologies and solutions to many complex problems. For a pair of NASA scientists at the Kennedy Space Center in Florida, an idea to help make that trip possible began with simply "wanting to understand why." During the Space Shuttle Program, Robert Youngquist, Ph.D., was among the center's employees who was given a small, cardboard-mount
 

Opportunity finishing science investigations at the center of Marathon Valley

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Pasadena CA (JPL) Jul 07, 2016
Opportunity is exploring 'Marathon Valley' on the rim of Endeavour crater, investigating outcrops for evidence of clay minerals. The rover is nearing the completion of its exploration within Marathon Valley with investigations in the center of the valley. Opportunity is finishing one of its final in-situ campaigns inside the valley. On Sol 4413 (June 22, 2016), the rover continued wi
 

Moons of Mars probably formed by giant impact

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Paris, France (SPX) Jul 07, 2016
The origin of the two Martian moons, Phobos and Deimos, remained a mystery. Due to their small size and irregular shape, they strongly resembled asteroids, but no one understood how Mars could have " captured " them and made them into satellites with almost circular and equatorial orbits. According to a competing theory, toward the end of its formation Mars suffered a giant collision with
 

Soyuz-FG to launch new crew to ISS fully assembled

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Baikonur, Kazakhstan (Sputnik) Jul 06, 2016
Specialists of the JSC SRC "Progress" have finished the full assembly of the carrier rocket Soyuz-FG with a newly modified piloted spacecraft Soyuz-MS at the Baikonur cosmodrome, according to the statement of Roscosmos. It is noted that the carrier rocket will be installed in a vertical position at the cosmodrome on July 4. The launch of the carrier rocket Soyuz-FG is scheduled for J
 

Experts call for satellite tech to be used in Africa's anti-poaching efforts

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Nairobi, Kenya XNA) Jul 03, 2016
Satellite technologies for the monitoring of wildlife movements and protection of biodiversity management are the solution to the conservation efforts in Africa, an expert said on Monday. Dr. Jake Wall, a Geospatial Adviser with the Save the Elephants, noted that the technology is capable of enabling conservationists in saving wildlife and other natural resources from exploitation. "
 

New Horizons Receives Mission Extension to the Kuiper Belt

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Washington DC (SPX) Jul 06, 2016
Following its historic first-ever flyby of Pluto, NASA's New Horizons mission has received the green light to fly onward to an object deeper in the Kuiper Belt, known as 2014 MU69. The spacecraft's planned rendezvous with the ancient object - considered one of the early building blocks of the solar system - is Jan. 1, 2019. "The New Horizons mission to Pluto exceeded our expectations and e
 

Chaotic Orbit of Comet Halley Explained

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Leiden, The Netherlands (SPX) Jul 06, 2016
A team of Dutch and Scottish researchers led by Simon Portegies Zwart (Leiden University) has found an explanation for the chaotic behavior of the orbit of Halley's Comet. The findings are accepted for publication in the Monthly Notices of the Royal Astronomical Society. Halley's Comet is one of the most famous comets. Halley can be seen from the Earth every 75 years. The last time was in
 

Our ancestors evolved faster after dinosaur extinction

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
London, UK (SPX) Jul 06, 2016
Our ancestors evolved three times faster in the 10 million years after the extinction of the dinosaurs than in the previous 80 million years, according to UCL researchers. The team found the speed of evolution of placental mammals - a group that today includes nearly 5000 species including humans - was constant before the extinction event but exploded after, resulting in the varied groups of mam
 

New mid-infrared laser system could detect atmospheric chemicals

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Boston MA (SPX) Jul 06, 2016
Researchers at MIT and elsewhere have found a new way of using mid-infrared lasers to turn regions of molecules in the open air into glowing filaments of electrically charged gas, or plasma. The new method could make it possible to carry out remote environmental monitoring to detect a wide range of chemicals with high sensitivity. The new system makes use of a mid-infrared ultra-fast pulse
 

Study: Mammals diversified in wake of dinosaur extinction, not before

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Brisbane, Australia (UPI) Jul 5, 2016
For more than 20 years, paleontologists have argued mammals began diversifying some 90 million years ago, prior to the disappearance of the dinosaurs. New research contradicts the narrative, suggesting mammals diversified in the wake of the dinosaurs' departure. Though a few primitive mammal species coexisted with the dinosaurs, it was the ecological space left in the wake of Cretaceous
 

'One-two punch' delivered dino death blow: study

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Paris (AFP) July 5, 2016
The dinosaurs' long reign was not ended by a merciful knockout punch, but torturous millennia of climate change before and after the oft-blamed space rock slammed into Earth, scientists said Tuesday. The impact at Chicxulub in modern-day Mexico certainly contributed to the disappearance of the giant lizards and other creatures, but was by no means the sole cause, a team concluded in a study
 

Researchers find human development's first gear

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Oxford, UK (SPX) Jul 06, 2016
Oxford University researchers are closer to solving a decade-old mystery after discovering that a set of genes they are studying play a key role in early human development. Evolutionary biologist Professor Peter Holland and graduate student Anne Booth identified and named the genes, known as Argfx, Leutx, Dprx and Tprx, in data published by the Human Genome Project in 2002. The genes belon
 

Large Hadron Collider finds three new particles, confirms fourth

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎11:15:57 AMGo to full article
Geneva, Switzerland (UPI) Jul 5, 2016
Europe's largest particle accelerator, the Large Hadron Collider, is back in action. According to two newly published studies, its latest round of experiments yielded three new "exotic" particles and confirmed the existence of a fourth. The newly identified particles are considered "exotic" because they contain four quarks, the building blocks of all matter. Particle physicists used to

 

 

 

 
 

News About Time And Space

 

 

Gravitational vortex provides new way to study matter close to a black hole

 
‎Wednesday, ‎July ‎20, ‎2016, ‏‎7:20:52 AMGo to full article
Paris (ESA) Jul 19, 2016 - ESA's orbiting X-ray observatory, XMM-Newton, has proved the existence of a 'gravitational vortex' around a black hole. The discovery, aided by NASA's NuSTAR mission, solves a mystery that has eluded astronomers for more than 30 years and will allow them to map the behaviour of matter very close to black holes. It could also open the door to future investigations of Albert Einstein's general relativity.

Matter falling into a black hole heats up as it plunges to its doom. Before it passes into the black hole and is lost from view forever, it can reach millions of degrees. At that temperature it shines X-rays into space.

In the 1980s, pioneering astronomers using early X-ray telescopes discovered that the X-rays coming from black holes flicker. The changes follow a set pattern. When the flickering begins, the dimming and re-brightening can take 10 seconds to complete. As the days, weeks and then months progress, the period shortens until the oscillation takes place 10 times every second. Then, the flickering suddenly stops altogether.

The phenomenon was dubbed the Quasi Periodic Oscillation (QPO). "It was immediately recognised to be something fascinating because it is coming from something very close to a black hole," says Adam Ingram, University of Amsterdam, The Netherlands, who began working to understand QPOs for his PhD in 2009.

During the 1990s, astronomers had begun to suspect that the QPOs were associated with a gravitational effect predicted by Einstein's general relativity: that a spinning object will create a kind of gravitational vortex.

"It is a bit like twisting a spoon in honey. Imagine that the honey is space and anything embedded in the honey will be 'dragged' around by the twisting spoon," explains Ingram. "In reality, this means that anything orbiting a spinning object will have its motion affected." In the case of an inclined orbit, it will 'precess'. This means that the whole orbit will change orientation around the central object. The time for the orbit to return to its initial condition is known as a precession cycle.

In 2004, NASA launched Gravity Probe B to measure this so-called Lense-Thirring effect around Earth. After painstaking analysis, scientists confirmed that the spacecraft would turn through a complete precession cycle once every 33 million years.

Around a black hole, however, the effect would be much more noticeable because of the stronger gravitational field. The precession cycle would take just a matter of seconds or less to complete. This is so close to the periods of the QPOs that astronomers began to suspect a link.

Ingram began working on the problem during his PhD, looking at what happened in the flat disc of matter surrounding a black hole. Known as an accretion disc, it is the place where material gradually spirals inwards towards the black hole. It had already been suggested that, close to the black hole, the flat accretion disc puffs up into a hot plasma, in which electrons are stripped from their host atoms.

Termed the hot inner flow, it shrinks in size over weeks and months as it is eaten by the black hole. Together with colleagues, Ingram published a paper in 2009 suggesting that the QPO is driven by Lense-Thirring precession of this hot flow. This is because the smaller the inner flow becomes, the closer to the black hole it would approach and so the faster its Lense-Thirring precession cycle would be. The question was: how to prove it?

"We have spent a lot of time trying to find smoking gun evidence for this behaviour," says Ingram.

The answer was that the inner flow is releasing high energy radiation that strikes the matter in the surrounding accretion disc, making the iron atoms in the disc shine like a fluorescent light tube. Instead of visible light, the iron releases X-rays of a single wavelength - referred to as 'a line'.

Because the accretion disc is rotating, the iron line has its wavelength distorted by the Doppler effect. Line emission from the approaching side of the disc is squashed - blue shifted - and line emission from the receding disc material is stretched - red shifted. If the inner flow really is precessing, it will sometimes shine on the approaching disc material and sometimes on the receding material, making the line wobble back and forth over the course of a precession cycle.

Seeing this wobbling is where XMM-Newton came in. Ingram and colleagues from Amsterdam, Cambridge, Durham, Southampton and Tokyo applied for a long duration observation that would allow them to watch the QPO repeatedly. They chose black hole H 1743-322, which was exhibiting a four-second QPO at the time. They watched it for 260,000 seconds with XMM-Newton. They also observed it for 70,000 seconds with NASA's NuSTAR X-ray observatory.

After a complicated analysis procedure to add all the observational data together, they saw that the iron line was wobbling in accordance with the predictions of general relativity. "We are directly measuring the motion of matter in a strong gravitational field near to a black hole," says Ingram.

This is the first time that the Lense-Thirring effect has been measured in a strong gravitational field. The technique will allow astronomers to map matter in the inner regions of accretion discs around black holes. It also hints at a powerful new tool with which to test general relativity.

Einstein's theory is largely untested in such strong gravitational fields. So if astronomers can understand the physics of the matter that is flowing into the black hole, they can use it to test the predictions of general relativity as never before - but only if the movement of the matter in the accretion disc can be completely understood.

"If you can get to the bottom of the astrophysics, then you can really test the general relativity," says Ingram. A deviation from the predictions of general relativity would be welcomed by a lot of astronomers and physicists. It would be a concrete signal that a deeper theory of gravity exists.

Larger X-ray telescopes in the future could help in the search because they could collect the X-rays faster. This would allow astronomers to investigate the QPO phenomenon in more detail. But for now, astronomers can be content with having seen Einstein's gravity at play around a black hole.

"This is a major breakthrough since the study combines information about the timing and energy of X-ray photons to settle the 30-year debate around the origin of QPOs. The photon collecting capability of XMM-Newton was instrumental in this work," says Norbert Schartel, ESA Project Scientist for XMM-Newton.

The results reported in this article are published in "A quasi-periodic modulation of the iron line centroid energy in the black hole binary H 1743-322", by Adam Ingram and colleagues, to appear in Monthly Notices of the Royal Astronomical Society, 461 (2): 1967-1980; doi: 10.1093/mnras/stw1245

 

 

Weird quantum effects stretch across hundreds of miles

 
‎Wednesday, ‎July ‎20, ‎2016, ‏‎7:20:52 AMGo to full article
Boston MA (SPX) Jul 19, 2016 - In the world of quantum, infinitesimally small particles, weird and often logic-defying behaviors abound. Perhaps the strangest of these is the idea of superposition, in which objects can exist simultaneously in two or more seemingly counterintuitive states. For example, according to the laws of quantum mechanics, electrons may spin both clockwise and counter-clockwise, or be both at rest and excited, at the same time.

The physicist Erwin Schrodinger highlighted some strange consequences of the idea of superposition more than 80 years ago, with a thought experiment that posed that a cat trapped in a box with a radioactive source could be in a superposition state, considered both alive and dead, according to the laws of quantum mechanics. Since then, scientists have proven that particles can indeed be in superposition, at quantum, subatomic scales. But whether such weird phenomena can be observed in our larger, everyday world is an open, actively pursued question.

Now, MIT physicists have found that subatomic particles called neutrinos can be in superposition, without individual identities, when traveling hundreds of miles. Their results, to be published later this month in Physical Review Letters, represent the longest distance over which quantum mechanics has been tested to date.

A subatomic journey across state lines
The team analyzed data on the oscillations of neutrinos - subatomic particles that interact extremely weakly with matter, passing through our bodies by the billions per second without any effect. Neutrinos can oscillate, or change between several distinct "flavors," as they travel through the universe at close to the speed of light.

The researchers obtained data from Fermilab's Main Injector Neutrino Oscillation Search, or MINOS, an experiment in which neutrinos are produced from the scattering of other accelerated, high-energy particles in a facility near Chicago and beamed to a detector in Soudan, Minnesota, 735 kilometers (456 miles) away. Although the neutrinos leave Illinois as one flavor, they may oscillate along their journey, arriving in Minnesota as a completely different flavor.

The MIT team studied the distribution of neutrino flavors generated in Illinois, versus those detected in Minnesota, and found that these distributions can be explained most readily by quantum phenomena: As neutrinos sped between the reactor and detector, they were statistically most likely to be in a state of superposition, with no definite flavor or identity.

What's more, the researchers found that the data was "in high tension" with more classical descriptions of how matter should behave. In particular, it was statistically unlikely that the data could be explained by any model of the sort that Einstein sought, in which objects would always embody definite properties rather than exist in superpositions.

"What's fascinating is, many of us tend to think of quantum mechanics applying on small scales," says David Kaiser, the Germeshausen Professor of the History of Science and professor of physics at MIT. "But it turns out that we can't escape quantum mechanics, even when we describe processes that happen over large distances. We can't stop our quantum mechanical description even when these things leave one state and enter another, traveling hundreds of miles. I think that's breathtaking."

Kaiser is a co-author on the paper, which includes MIT physics professor Joseph Formaggio, junior Talia Weiss, and former graduate student Mykola Murskyj.

A flipped inequality
The team analyzed the MINOS data by applying a slightly altered version of the Leggett-Garg inequality, a mathematical expression named after physicists Anthony Leggett and Anupam Garg, who derived the expression to test whether a system with two or more distinct states acts in a quantum or classical fashion.

Leggett and Garg realized that the measurements of such a system, and the statistical correlations between those measurements, should be different if the system behaves according to classical versus quantum mechanical laws.

"They realized you get different predictions for correlations of measurements of a single system over time, if you assume superposition versus realism," Kaiser explains, where "realism" refers to models of the Einstein type, in which particles should always exist in some definite state.

Formaggio had the idea to flip the expression slightly, to apply not to repeated measurements over time but to measurements at a range of neutrino energies. In the MINOS experiment, huge numbers of neutrinos are created at various energies, where Kaiser says they then "careen through the Earth, through solid rock, and a tiny drizzle of them will be detected" 735 kilometers away.

According to Formaggio's reworking of the Leggett-Garg inequality, the distribution of neutrino flavors - the type of neutrino that finally arrives at the detector - should depend on the energies at which the neutrinos were created. Furthermore, those flavor distributions should look very different if the neutrinos assumed a definite identity throughout their journey, versus if they were in superposition, with no distinct flavor.

"The big world we live in"
Applying their modified version of the Leggett-Garg expression to neutrino oscillations, the group predicted the distribution of neutrino flavors arriving at the detector, both if the neutrinos were behaving classically, according to an Einstein-like theory, and if they were acting in a quantum state, in superposition. When they compared both predicted distributions, they found there was virtually no overlap.

More importantly, when they compared these predictions with the actual distribution of neutrino flavors observed from the MINOS experiment, they found that the data fit squarely within the predicted distribution for a quantum system, meaning that the neutrinos very likely did not have individual identities while traveling over hundreds of miles between detectors.

But what if these particles truly embodied distinct flavors at each moment in time, rather than being some ghostly, neither-here-nor-there phantoms of quantum physics? What if these neutrinos behaved according to Einstein's realism-based view of the world? After all, there could be statistical flukes due to defects in instrumentation, that might still generate a distribution of neutrinos that the researchers observed. Kaiser says if that were the case and "the world truly obeyed Einstein's intuitions," the chances of such a model accounting for the observed data would be "something like one in a billion."

"What gives people pause is, quantum mechanics is quantitatively precise and yet it comes with all this conceptual baggage," Kaiser says. "That's why I like tests like this: Let's let these things travel further than most people will drive on a family road trip, and watch them zoom through the big world we live in, not just the strange world of quantum mechanics, for hundreds of miles. And even then, we can't stop using quantum mechanics. We really see quantum effects persist across macroscopic distances."

 

 

The birth of quantum holography

 
‎Wednesday, ‎July ‎20, ‎2016, ‏‎7:20:52 AMGo to full article
Warsaw, Poland (SPX) Jul 19, 2016 - Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics.

Scientists at the Faculty of Physics, University of Warsaw, have created the first ever hologram of a single light particle. The spectacular experiment, reported in the prestigious journal Nature Photonics, was conducted by Dr. Radoslaw Chrapkiewicz and Michal Jachura under the supervision of Dr. Wojciech Wasilewski and Prof. Konrad Banaszek. Their successful registering of the hologram of a single photon heralds a new era in holography: quantum holography, which promises to offer a whole new perspective on quantum phenomena.

"We performed a relatively simple experiment to measure and view something incredibly difficult to observe: the shape of wavefronts of a single photon," says Dr. Chrapkiewicz.

In standard photography, individual points of an image register light intensity only. In classical holography, the interference phenomenon also registers the phase of the light waves (it is the phase which carries information about the depth of the image). When a hologram is created, a well-described, undisturbed light wave (reference wave) is superimposed with another wave of the same wavelength but reflected from a three-dimensional object (the peaks and troughs of the two waves are shifted to varying degrees at different points of the image).

This results in interference and the phase differences between the two waves create a complex pattern of lines. Such a hologram is then illuminated with a beam of reference light to recreate the spatial structure of wavefronts of the light reflected from the object, and as such its 3D shape.

One might think that a similar mechanism would be observed when the number of photons creating the two waves were reduced to a minimum, that is to a single reference photon and a single photon reflected by the object. And yet you'd be wrong! The phase of individual photons continues to fluctuate, which makes classical interference with other photons impossible.

Since the Warsaw physicists were facing a seemingly impossible task, they attempted to tackle the issue differently: rather than using classical interference of electromagnetic waves, they tried to register quantum interference in which the wave functions of photons interact.

Wave function is a fundamental concept in quantum mechanics and the core of its most important equation: the Schrodinger equation. In the hands of a skilled physicist, the function could be compared to putty in the hands of a sculptor: when expertly shaped, it can be used to 'mould' a model of a quantum particle system. Physicists are always trying to learn about the wave function of a particle in a given system, since the square of its modulus represents the distribution of the probability of finding the particle in a particular state, which is highly useful.

"All this may sound rather complicated, but in practice our experiment is simple at its core: instead of looking at changing light intensity, we look at the changing probability of registering pairs of photons after the quantum interference," explains doctoral student Jachura.

Why pairs of photons? A year ago, Chrapkiewicz and Jachura used an innovative camera built at the University of Warsaw to film the behaviour of pairs of distinguishable and non-distinguishable photons entering a beam splitter. When the photons are distinguishable, their behaviour at the beam splitter is random: one or both photons can be transmitted or reflected. Non-distinguishable photons exhibit quantum interference, which alters their behaviour: they join into pairs and are always transmitted or reflected together. This is known as two-photon interference or the Hong-Ou-Mandel effect.

"Following this experiment, we were inspired to ask whether two-photon quantum interference could be used similarly to classical interference in holography in order to use known-state photons to gain further information about unknown-state photons. Our analysis led us to a surprising conclusion: it turned out that when two photons exhibit quantum interference, the course of this interference depends on the shape of their wavefronts," says Dr. Chrapkiewicz.

Quantum interference can be observed by registering pairs of photons. The experiment needs to be repeated several times, always with two photons with identical properties. To meet these conditions, each experiment started with a pair of photons with flat wavefronts and perpendicular polarisations; this means that the electrical field of each photon vibrated in a single plane only, and these planes were perpendicular for the two photons.

The different polarisation made it possible to separate the photons in a crystal and make one of them 'unknown' by curving their wavefronts using a cylindrical lens. Once the photons were reflected by mirrors, they were directed towards the beam splitter (a calcite crystal).

The splitter didn't change the direction of vertically-polarised photons, but it did diverge diplace horizontally-polarised photons. In order to make each direction equally probable and to make sure the crystal acted as a beam splitter, the planes of photon polarisation were bent by 45 degrees before the photons entered the splitter.

The photons were registered using the state-of-the-art camera designed for the previous experiments. By repeating the measurements several times, the researchers obtained an interference image corresponding to the hologram of the unknown photon viewed from a single point in space. The image was used to fully reconstruct the amplitude and phase of the wave function of the unknown photon.

The experiment conducted by the Warsaw physicists is a major step towards improving our understanding of the fundamental principles of quantum mechanics. Until now, there has not been a simple experimental method of gaining information about the phase of a photon's wave function. Although quantum mechanics has many applications, and it has been verified many times with a great degree of accuracy over the last century, we are still unable to explain what wave functions actually are: are they simply a handy mathematical tool, or are they something real?

"Our experiment is one of the first allowing us to directly observe one of the fundamental parameters of photon's wave function - its phase - bringing us a step closer to understanding what the wave function really is," explains Jachura.

The Warsaw physicists used quantum holography to reconstruct wave function of an individual photon. Researchers hope that in the future they will be able to use a similar method to recreate wave functions of more complex quantum objects, such as certain atoms. Will quantum holography find applications beyond the lab to a similar extent as classical holography, which is routinely used in security (holograms are difficult to counterfeit), entertainment, transport (in scanners measuring the dimensions of cargo), microscopic imaging and optical data storing and processing technologies?

"It's difficult to answer this question today. All of us - I mean physicists - must first get our heads around this new tool. It's likely that real applications of quantum holography won't appear for a few decades yet, but if there's one thing we can be sure of it's that they will be surprising," summarises Prof. Banaszek.

"Hologram of a Single Photon"; R. Chrapkiewicz, M. Jachura, K. Banaszek, W. Wasilewski; DOI: 10.1038/nphoton.2016.129

 

 

Scientists generate first direct short-wavelength spin waves

 
‎Wednesday, ‎July ‎20, ‎2016, ‏‎7:20:52 AMGo to full article
Dresden, Germany (UPI) Jul 19, 2016 - Computers and smart technologies are approaching a size limit. Components can't get much smaller than they already are without easily overheating.

"One major problem with current technologies, is the heat which is generated when data are transmitted with the aid of electric currents," Sebastian Wintz, a scientist with the HZDR Institute of Ion Beam Physics and Materials Research, said in a news release. "We need a new concept."

If the trend of miniaturization is to continue, researchers say, engineers must find a substitute for electric currents. Scientists at Helmholtz-Zentrum Dresden-Rossendorf, a German research laboratory, may have already found a one.

Recently, researchers directly generated magnetic spin waves with extremely short wavelengths -- a first.

Currently, data processing is carried out by electric currents. Data-carrying charged particles are pushed across nanowires squeezed together on tiny computer chip. These particles create a lot of heat as they move. If electron-carrying nanowires get too close, heat fails to dissipate and the system fails.

Magnetic spin waves don't move particles but impart them with a magnetic moment. A change in spin rate can trigger a chain reaction among a series of ferromagnetic particles, propelling information across the surface of a tiny interface.

Currently, magnetic spin waves with extremely short wavelengths are generated via small metal antennae with a high-frequency alternating current. Until now, researchers haven't been able to create an antenna small enough to be used in computer processing.

Scientists developed a new way to generate the spin waves by creating a magnetic vortex in a small ferromagnetic disk. An alternating current supplied to the center of the disk creates and propels a magnetic spin wave.

To lower the wavelength of the spin wave further, researchers sandwiched a thin, non-magnetic layer with two of the disks. Due to antiferromagnetic coupling, the disks' two vortexes attempt to move in opposite direction. Their opposition ensures the emitted spin wave features a shortened wavelength.

"Only in this way do we arrive at a result which is relevant for information technology," Wintz said.

Researchers also found that the frequency of the alternating current can be manipulated to further augment the spin wave's wavelength.

Researchers shared their finding in a new paper, published this week in the journal Nature Nanotechnology.

 

 

Physicists collide ultracold atoms to observe key quantum principle

 
‎Wednesday, ‎July ‎20, ‎2016, ‏‎7:20:52 AMGo to full article
Dunedin, New Zealand (SPX) Jul 13, 2016 - Physicists from New Zealand's University of Otago have used steerable 'optical tweezers' to split minute clouds of ultracold atoms and slowly smash them together to directly observe a key theoretical principle of quantum mechanics.

The principle, known as Pauli Exclusion, places fundamental constraints on the behavior of groups of identical particles and underpins the structure and stability of atoms as well as the mechanical, electrical, magnetic and chemical properties of almost all materials.

Otago Physics researcher Associate Professor Niels Kjaergaard led the research, which is newly published in the prestigious journal Nature Communications.

Kjaergaard and his team used extremely precisely controlled laser beams to confine, accelerate and gently collide ultracold atomic clouds of fermionic potassium. The atomic clouds had a temperature of a mere millionth of degree Kelvin above absolute zero.

The Pauli Exclusion Principle predicts a forbidden zone along a meridian of the spherical halo of scattered particles, which the experiments indeed unveiled.

"This dark band results from a 'no side-stepping' rule that the principle dictates, which is that indistinguishable fermions cannot scatter out at 90 degrees to the collision axis," Kjaergaard says.

When PhD student Ryan Thomas looked more closely at his data, he found that under some conditions the images of scattering halos from the particles would actually display side-stepping--the dark band would be less dark.

"This is not because the rule suddenly breaks down, but because there can be situations where a particle scatters multiple times with consecutively new collision axes," Associate Professor Kjaergaard says.

This particular finding has important implications for gaining insights into the particulars of the underlying processes governing multiple particle scattering.

 

 

New Kind of Black Hole Now Firmly Within Observers' Sight

 
‎Wednesday, ‎July ‎20, ‎2016, ‏‎7:20:52 AMGo to full article
Austin TX (SPX) Jul 13, 2016 - Astronomers Aaron Smith and Volker Bromm of The University of Texas at Austin, working with Avi Loeb of the Harvard-Smithsonian Center for Astrophysics, have discovered evidence for an unusual kind of black hole born extremely early in the universe. They showed that a recently discovered unusual source of intense radiation is likely powered by a "direct-collapse black hole," a type of object predicted by theorists more than a decade ago. Their work is published in the journal Monthly Notices of the Royal Astronomical Society.

"It's a cosmic miracle," Bromm said, referring to the precise set of conditions present half a billion years after the Big Bang that allowed these behemoths to emerge. "It's the only time in the history of the universe when conditions are just right" for them to form.

These direct-collapse black holes may be the solution to a long-standing puzzle in astronomy: How did supermassive black holes form in the early epochs of the universe? There is strong evidence for their existence, as they are needed to power the highly luminous quasars detected in the young universe. However, there are several problems that should prevent their formation, and the conventional growth process is much too slow.

Astronomers think they know how supermassive black holes weighing in at millions of Suns grow in the heart of most galaxies in our present epoch. They get started from a "seed" black hole, created when an extremely massive star collapses. This seed black hole has the mass of about 100 Suns. It pulls in gas from its surroundings, becoming much more massive, and eventually may merge with other seed black holes. This entire process is called accretion.

The accretion theory does not explain supermassive black holes in extremely distant - and therefore young - quasars. Visible to us despite its distance of billions of light-years, a quasar's incredible brightness comes from matter spiraling into a supermassive black hole, heating to millions of degrees, creating jets that shine as beacons across the universe.

These early galaxies may have contained the first generation of stars created after the Big Bang. And although these stars can collapse to form black holes, they don't work as early quasar seeds. There is no surrounding gas for the black hole to feed on. That gas has been blown away by winds from the hot, newly formed stars.

"Star formation is the enemy of forming massive black holes" in early galaxies, Bromm said. "Stars produce feedback that blows away the surrounding gas cloud."

For decades, astronomers have called this conundrum "the quasar seed problem."

In 2003, Bromm and Loeb came up with a theoretical idea to get an early galaxy to form a supermassive seed black hole, by suppressing the otherwise prohibitive energy input from star formation. Astronomers later dubbed this process "direct collapse."

Begin with a "primordial cloud of hydrogen and helium, suffused in a sea of ultraviolet radiation," Bromm said. "You crunch this cloud in the gravitational field of a dark-matter halo. Normally, the cloud would be able to cool, and fragment to form stars. However, the ultraviolet photons keep the gas hot, thus suppressing any star formation. These are the desired, near-miraculous conditions: collapse without fragmentation! As the gas gets more and more compact, eventually you have the conditions for a massive black hole."

This set of cosmic conditions is exquisitely sensitive to the time period in the universe's history - this process does not happen in galaxies today.

According to Loeb, "The quasars observed in the early universe resemble giant babies in a delivery room full of normal infants. One is left wondering: what is special about the environment that nurtured these giant babies? Typically the cold gas reservoir in nearby galaxies like the Milky Way is consumed mostly by star formation.

"The theory we proposed when Bromm was my postdoc [at Harvard] suggested that the conditions in the first generation of galaxies were different," he said. "Instead of making many normal stars, these galaxies formed a single supermassive star at their center that ended up collapsing to a seed black hole. Hence the gas in these environments was used to feed this seed black hole rather than make many normal stars."

Bromm and Loeb published their theory in 2003. "But it was all theoretical back then," Bromm said.

Fast-forward a dozen years, and Bromm is now a professor at The University of Texas at Austin with post-docs and graduate students of his own. That's where Aaron Smith comes in.

Smith, Bromm, and Loeb had become interested in a galaxy called CR7, identified from a Hubble Space Telescope survey called COSMOS (in a paper led by Jorryt Matthee of Leiden University). Hubble spied CR7 at 1 billion years after the Big Bang.

David Sobral of the University of Lisbon had made follow-up observations of CR7 with some of the world's largest ground-based telescopes, including Keck and the VLT. These uncovered some extremely unusual features in the light signature coming from CR7. Specifically a certain hydrogen line in the spectrum, known as "Lyman-alpha," was several times brighter than expected. Remarkably, the spectrum also showed an unusually bright helium line.

"Whatever is driving this source is very hot - hot enough to ionize helium," Smith said.

Bromm agreed. "You need it to be 100,000 K - very hot, a very hard UV source" for that to happen, he said.

These and other unusual features in the spectrum, such as the absence of any detected lines from elements heavier than helium (in astronomical parlance, "metals,") together with the source's distance - and therefore its cosmic epoch - meant that it could either be a cluster of primordial stars or a supermassive black hole likely formed by direct collapse.

Smith ran simulations for both scenarios using the Stampede supercomputer at UT Austin's Texas Advanced Computing Center.

"We developed a novel code," Smith said, explaining that his code modeled the system differently than previous simulations.

"The old models were like a snapshot; this one is like a movie," he explained.

The type of modeling Smith used is called "radiation hydrodynamics," Bromm said. "It's the most expensive approach in terms of computer processing power."

The new code paid off, though. The star cluster scenario "spectacularly failed," Smith said, while the direct collapse black hole model performed well.

Bromm said their work is about more than understanding the inner workings of one early galaxy.

"With CR7, we had one intriguing observation. We are trying to explain it, and to predict what future observations will find. We are trying to provide a comprehensive theoretical framework."

In addition to Smith, Bromm, and Loeb's work, NASA recently announced the discovery of two additional direct-collapse black hole candidates based on observations with the Chandra X-ray Observatory.

It seems astronomers are "converging on this model," for solving the quasar seed problem, Smith said.

"Evidence for a direct collapse black hole in the Lyman-alpha source CR7," Aaron Smith, Volker Bromm and Abraham Loeb, 2016, Monthly Notices of the Royal Astronomical Society

 

 

Physicists discover family of tetraquarks

 
‎Wednesday, ‎July ‎20, ‎2016, ‏‎7:20:52 AMGo to full article
Syracuse NY (SPX) Jul 12, 2016 - Physicists in the Syracuse University College of Arts and Sciences have made science history by confirming the existence of a rare four-quark particle and discovering evidence of three other "exotic" siblings. Their findings are based on data from the Large Hadron Collider (LHC), the world's biggest, most powerful particle accelerator, located at the CERN science laboratory in Geneva, Switzerland.

Professor Tomasz Skwarnicki and Ph.D. student Thomas Britton G'16, both members of the Experimental High-Energy Physics Group at Syracuse and the Large Hadron Collider beauty (LHCb) collaboration at CERN, have confirmed the existence of a tetraquark candidate known as X(4140). They also have detected three other exotic particles with higher masses, called X(4274), X(4500) and X(4700).

All four particles were the subject of Britton's Ph.D. dissertation, which he defended in May and then submitted, on behalf of the LHCb collaboration, as a journal article to Physical Review Letters (American Physical Society, 2016). A tetraquark is a particle made of four quarks: two quarks and two antiquarks.

Tetraquarks - and, by extension, pentaquarks, containing five quarks - are considered exotic because they have more than the usual allotment of two or three quarks.

"Even though all four particles contain the same quark composition, each of them has a unique internal structure, mass and set of quantum numbers," says Skwarnicki, who, in April 2014, confirmed the existence of the world's first charged tetraquark candidate, called Z(4430)+. A year earlier, he and Ph.D. student Bin Gui G'14 determined the quantum numbers of the first neutral, heavy tetraquark candidate, X(3872).

Quantum numbers describe each particle's subatomic properties.

Skwarnicki says the measurement of all four particles is the largest single one of its kind to date. Unlike other exotic particle candidates, his and Britton's do not contain ordinary nuclear matter (i.e., quarks found in protons and neutrons).

"We've never seen this kind of thing before. It's helping us distinguish among various theoretical models of particles," Skwarnicki says.

A fellow of the American Physical Society, Skwarnicki is a longtime member of the LHCb collaboration, involving approximately 800 other scientists from 16 countries. Their goal is to discover all forms of matter, in hopes of explaining why the universe is made of it, instead of anti-matter.

Skwarnicki's work focuses on quarks - fundamental constituents of matter that serve as a kind of scaffolding for protons and neutrons. While most particles have two or three quarks, Skwarnicki and others, in the past decade, have observed ones with four or five.

Last summer, he and doctoral student Nathan Jurik G'16 teamed up with Distinguished Professor Sheldon Stone and Liming Zhang, a professor at Tsinghua University in Beijing, to announce their discovery of two rare pentaquark states. The news made Physicists discover family of tetraquarkss, thrusting Syracuse and CERN into the international spotlight.

According to the Standard Model of particle physics, there are six kinds of quarks, whose intrinsic properties cause them to be grouped into pairs with unusual names: up/down, charm/strange and top/bottom.

The particles that Skwarnicki and Britton study have two charm quarks and two strange quarks. Charm and strange quarks are the third- and fourth-most massive of all quarks.

That all four quarks in the new family are "heavy" is noteworthy.

"The heavier the quark, the smaller the corresponding particle it creates," says Skwarnicki, adding that the names of the particles reflect their masses. "The names are denoted by mega-electron volts [MeV], referring to the amount of energy an electron gains after being accelerated by a volt of electricity. ... This information, along with each particle's quantum numbers, enhances our understanding of the formation of particles and the fundamental structures of matter."

Evidence of X(4140) first appeared in 2009 at the Fermi National Accelerator Laboratory, outside of Chicago, but the observation was not confirmed until three years later at CERN.

A rendering of the enormous LHCb detector, which registers approximately 10 million proton collisions per second. Scientists study the debris from these collisions to better understand the building blocks of matter and the forces controlling them. Extremely rare and four times heavier than a proton, X(4140) has been initially detected only 20 times out of billions of man-made energy collisions. LHCb is uniquely suited to study such particles, and thus, has gone on to detect X(4140) nearly 560 times.

Skwarnicki attributes the discovery of X(4140)'s three siblings, culled from LHCb data from 2011 to 2012, to increased instrumental sensitivity. It is the energy configuration of the quarks, he explains, that gives each particle its unique mass and identity.

"Quarks may be tightly bound, like three quarks packed inside a single proton, or loosely bound, like two atoms forming a molecule," Skwarnicki says. "By examining the particles' quantum numbers, we were able to narrow down the possibilities and rule out the molecular hypothesis."

A snapshot of LHCb detector data, singling out the collisions that have resulted in the four tetraquarks. Not that the process has been easy. An "aporetic saga" is how Britton describes studying molecular structures that seem to "jump out of the data."

"We looked at every known particle and process to make sure that these four structures couldn't be explained by any pre-existing physics," he says. "It was like baking a six-dimensional cake with 98 ingredients and no recipe - just a picture of a cake."

Meanwhile, Skwarnicki, Britton and others face the onerous task of combing through data and developing theoretical models, in an attempt to confirm what they have seen.

"It may be a quartet of entirely new particles or the complex interplay of known particles, simply flipping their identities," Skwarnicki concludes. "Either way, the outcome will shape our understanding of the subatomic universe."

 

 

Alma finds a swirling, cool jet that reveals a growing, supermassive black hole

 
‎Wednesday, ‎July ‎20, ‎2016, ‏‎7:20:52 AMGo to full article
Gothenburg, Sweden (SPX) Jul 11, 2016 - A Chalmers-led team of astronomers have used the Alma telescope to make the surprising discovery of a jet of cool, dense gas in the centre of a galaxy located 70 million light years from Earth. The jet, with its unusual, swirling structure, gives new clues to a long-standing astronomical mystery - how supermassive black holes grow.

A team of astronomers led by Susanne Aalto, professor of radio astronomy at Chalmers, has used the Alma telescope (Atacama Large Millimeter/submillimeter Array) to observe a remarkable structure in the centre of the galaxy NGC 1377, located 70 million light years from Earth in the constellation Eridanus (the River). The results are presented in a paper published in the June 2016 issue of the journal Astronomy and Astrophysics.

"We were curious about this galaxy because of its bright, dust-enshrouded centre. What we weren't expecting was this: a long, narrow jet streaming out from the galaxy nucleus", says Susanne Aalto.

The observations with Alma reveal a jet which is 500 light years long and less than 60 light years across, travelling at speeds of at least 800 000 kilometres per hour (500 000 miles per hour).

Most galaxies have a supermassive black hole in their centres; these black holes can have masses of between a few million to a billion solar masses. How they grew to be so massive is a long-standing mystery for scientists.

A black hole's presence can be seen indirectly by telescopes when matter is falling into it - a process which astronomers call "accretion". Jets of fast-moving material are typical signatures that a black hole is growing by accreting matter. The jet in NGC 1377 reveals the presence of a supermassive black hole. But it has even more to tell us, explains Francesco Costagliola (Chalmers), co-author on the paper.

"The jets we usually see emerging from galaxy nuclei are very narrow tubes of hot plasma. This jet is very different. Instead it's extremely cool, and its light comes from dense gas composed of molecules", he says.

The jet has ejected molecular gas equivalent to two million times the mass of the Sun over a period of only around half a million years - a very short time in the life of a galaxy. During this short and dramatic phase in the galaxy's evolution, its central, supermassive black hole must have grown fast.

"Black holes that cause powerful narrow jets can grow slowly by accreting hot plasma. The black hole in NGC1377, on the other hand, is on a diet of cold gas and dust, and can therefore grow - at least for now - at a much faster rate", explains team member Jay Gallagher (University of Wisconsin-Madison).

The motion of the gas in the jet also surprised the astronomers. The measurements with Alma are consistent with a jet that is precessing - swirling outwards like water from a garden sprinkler.

"The jet's unusual swirling could be due to an uneven flow of gas towards the central black hole. Another possibility is that the galaxy's centre contains two supermassive black holes in orbit around each other", says Sebastien Muller, Chalmers, also a member of the team.

The discovery of the remarkable cool, swirling jet from the centre of this galaxy would have been impossible without Alma, concludes Susanne Aalto.

"Alma's unique ability to detect and measure cold gas is revolutionising our understanding of galaxies and their central black holes. In NGC 1377 we're witnessing a transient stage in a galaxy's evolution which will help us understand the most rapid and important growth phases of supermassive black holes, and the life cycle of galaxies in the universe", she says.

This research is presented in the article A precessing molecular jet signaling an obscured, growing supermassive black hole in NGC 1377, published in the June 2016 issue of Astronomy and Astrophysics.

 

 

2016 Will Be One Second Longer

 
‎Wednesday, ‎July ‎20, ‎2016, ‏‎7:20:52 AMGo to full article
Washington DC (SPX) Jul 11, 2016 - On December 31, 2016, a "leap second" will be added to the world's clocks at 23 hours, 59 minutes 59 seconds Coordinated Universal Time (UTC). This corresponds to 6:59:59 pm Eastern Standard Time, when the extra second will be inserted at the U.S. Naval Observatory's Master Clock Facility in Washington, DC.

Historically, time was based on the mean rotation of the Earth relative to celestial bodies, and the second was defined in this reference frame. However, the invention of atomic clocks defined a much more precise "atomic" timescale and a second that is independent of Earth's rotation.

In 1970, international agreements established a procedure to maintain a relationship between Coordinated Universal Time (UTC) and UT1, a measure of the Earth's rotation angle in space.

The International Earth Rotation and Reference Systems Service (IERS) is the organization that monitors the difference in the two time scales and calls for leap seconds to be inserted in or removed from UTC when necessary to keep them within 0.9 second of each other.

In order to create UTC, a secondary timescale, International Atomic Time (TAI), is first generated; it consists of UTC without leap seconds. When the system was instituted in 1972, the difference between TAI and UTC was determined to be 10 seconds.

Since 1972, 26 additional leap seconds have been added at intervals varying from six months to seven years, with the most recent being inserted on June 30, 2015. After the insertion of the leap second in December, the cumulative difference between UTC and TAI will be 37 seconds.

Confusion sometimes arises over the misconception that the occasional insertion of leap seconds every few years indicates that the Earth should stop rotating within a few millennia. This is because some mistake leap seconds to be a measure of the rate at which the Earth is slowing. The one-second increments are, however, indications of the accumulated difference in time between the two systems.

The decision as to when to add a leap second is determined by the IERS, for which the USNO serves as the Rapid Service/Prediction Center. Measurements show that the Earth, on average, runs slow compared to atomic time, at about 1.5 to 2 milliseconds per day. These data are generated by the USNO using the technique of Very Long Baseline Interferometry (VLBI).

VLBI measures the rotation of the Earth by observing the apparent positions of distant objects near the edge of the observable universe. These observations show that after roughly 500 to 750 days, the difference between Earth rotation time and atomic time would be about one second.

Instead of allowing this to happen a leap second is inserted to bring the two time-scales closer together. We can easily change the time of an atomic clock, but it is not possible to alter the Earth's rotational speed to match the atomic clocks.

 

 

Link Between Primordial Black Holes and Dark Matter

 
‎Wednesday, ‎July ‎20, ‎2016, ‏‎7:20:52 AMGo to full article
Greenbelt MD (SPX) May 26, 2016 - Dark matter is a mysterious substance composing most of the material universe, now widely thought to be some form of massive exotic particle. An intriguing alternative view is that dark matter is made of black holes formed during the first second of our universe's existence, known as primordial black holes. Now a scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, suggests that this interpretation aligns with our knowledge of cosmic infrared and X-ray background glows and may explain the unexpectedly high masses of merging black holes detected last year.

"This study is an effort to bring together a broad set of ideas and observations to test how well they fit, and the fit is surprisingly good," said Alexander Kashlinsky, an astrophysicist at NASA Goddard. "If this is correct, then all galaxies, including our own, are embedded within a vast sphere of black holes each about 30 times the Sun's mass."

In 2005, Kashlinsky led a team of astronomers using NASA's Spitzer Space Telescope to explore the background glow of infrared light in one part of the sky. The researchers reported excessive patchiness in the glow and concluded it was likely caused by the aggregate light of the first sources to illuminate the universe more than 13 billion years ago. Follow-up studies confirmed that this cosmic infrared background (CIB) showed similar unexpected structure in other parts of the sky.

In 2013, another study compared how the cosmic X-ray background (CXB) detected by NASA's Chandra X-ray Observatory compared to the CIB in the same area of the sky. The first stars emitted mainly optical and ultraviolet light, which today is stretched into the infrared by the expansion of space, so they should not contribute significantly to the CXB.

Yet the irregular glow of low-energy X-rays in the CXB matched the patchiness of the CIB quite well. The only object we know of that can be sufficiently luminous across this wide an energy range is a black hole. The research team concluded that primordial black holes must have been abundant among the earliest stars, making up at least about one out of every five of the sources contributing to the CIB.

The nature of dark matter remains one of the most important unresolved issues in astrophysics. Scientists currently favor theoretical models that explain dark matter as an exotic massive particle, but so far searches have failed to turn up evidence these hypothetical particles actually exist. NASA is currently investigating this issue as part of its Alpha Magnetic Spectrometer and Fermi Gamma-ray Space Telescope missions.

"These studies are providing increasingly sensitive results, slowly shrinking the box of parameters where dark matter particles can hide," Kashlinsky said. "The failure to find them has led to renewed interest in studying how well primordial black holes - black holes formed in the universe's first fraction of a second - could work as dark matter."

Physicists have outlined several ways in which the hot, rapidly expanding universe could produce primordial black holes in the first thousandths of a second after the Big Bang. The older the universe is when these mechanisms take hold, the larger the black holes can be. And because the window for creating them lasts only a tiny fraction of the first second, scientists expect primordial black holes would exhibit a narrow range of masses.

On Sept. 14, gravitational waves produced by a pair of merging black holes 1.3 billion light-years away were captured by the Laser Interferometer Gravitational-Wave Observatory (LIGO) facilities in Hanford, Washington, and Livingston, Louisiana. This event marked the first-ever detection of gravitational waves as well as the first direct detection of black holes. The signal provided LIGO scientists with information about the masses of the individual black holes, which were 29 and 36 times the Sun's mass, plus or minus about four solar masses. These values were both unexpectedly large and surprisingly similar.

"Depending on the mechanism at work, primordial black holes could have properties very similar to what LIGO detected," Kashlinsky explained. "If we assume this is the case, that LIGO caught a merger of black holes formed in the early universe, we can look at the consequences this has on our understanding of how the cosmos ultimately evolved."

In his new paper, published May 24 in The Astrophysical Journal Letters, Kashlinsky analyzes what might have happened if dark matter consisted of a population of black holes similar to those detected by LIGO. The black holes distort the distribution of mass in the early universe, adding a small fluctuation that has consequences hundreds of millions of years later, when the first stars begin to form.

For much of the universe's first 500 million years, normal matter remained too hot to coalesce into the first stars. Dark matter was unaffected by the high temperature because, whatever its nature, it primarily interacts through gravity. Aggregating by mutual attraction, dark matter first collapsed into clumps called minihaloes, which provided a gravitational seed enabling normal matter to accumulate.

Hot gas collapsed toward the minihaloes, resulting in pockets of gas dense enough to further collapse on their own into the first stars. Kashlinsky shows that if black holes play the part of dark matter, this process occurs more rapidly and easily produces the lumpiness of the CIB detected in Spitzer data even if only a small fraction of minihaloes manage to produce stars.

As cosmic gas fell into the minihaloes, their constituent black holes would naturally capture some of it too. Matter falling toward a black hole heats up and ultimately produces X-rays. Together, infrared light from the first stars and X-rays from gas falling into dark matter black holes can account for the observed agreement between the patchiness of the CIB and the CXB.

Occasionally, some primordial black holes will pass close enough to be gravitationally captured into binary systems. The black holes in each of these binaries will, over eons, emit gravitational radiation, lose orbital energy and spiral inward, ultimately merging into a larger black hole like the event LIGO observed.

"Future LIGO observing runs will tell us much more about the universe's population of black holes, and it won't be long before we'll know if the scenario I outline is either supported or ruled out," Kashlinsky said.

Kashlinsky leads a science team centered at Goddard that is participating in the European Space Agency's Euclid mission, which is currently scheduled to launch in 2020. The project, named LIBRAE, will enable the observatory to probe source populations in the CIB with high precision and determine what portion was produced by black holes.

Research paper: "LIGO Gravitational Wave Detection, Primordial Black Holes, and the Near-IR Cosmic Infrared Background Anisotropies," A. Kashlinsky, 2016 June 1, Astrophysical Journal Letters

 

 

Aftermath of Star Being Swallowed by Supermassive Black Hole

 
‎Tuesday, ‎July ‎12, ‎2016, ‏‎10:34:22 AMGo to full article
Onsala, Sweden (SPX) Jul 08, 2016 - Radio astronomers have used a radio telescope network the size of the Earth to zoom in on a unique phenomenon in a distant galaxy: a jet activated by a star being consumed by a supermassive black hole. The record-sharp observations reveal a compact and surprisingly slowly-moving source of radio waves.

An international team of radio astronomers led by Jun Yang (Onsala Space Observatory, Chalmers University of Technology, Sweden) studied the new-born jet in a source known as Swift J1644+57 with the European VLBI Network (EVN), an Earth-size radio telescope array.

The results, published in a paper in the journal Monthly Notices of the Royal Astronomical Society, will also be presented at the European Week of Astronomy and Space Science in Athens, Greece, on Friday, 8 July 2016.

When a star moves close to a supermassive black hole it can be disrupted violently. About half of the gas in the star is drawn towards the black hole and forms a disc around it. During this process, large amounts of gravitational energy are converted into electromagnetic radiation, creating a bright source which is visible at many different wavelengths.

One dramatic consequence is that some of the star's material, stripped from the star and collected around the black hole, can be ejected in extremely narrow beams of particles at speeds approaching the speed of light. These so-called relativistic jets produce strong emission at radio wavelengths.

The first known tidal disruption event that formed a relativistic jet was discovered in 2011 by the NASA satellite Swift. Initially identified by a bright flare in X-rays, the event was given the name Swift J1644+57. The source was traced to a distant galaxy, so far away that its light took around 3.9 billion years to reach Earth.

Jun Yang and his colleagues used the technique very long baseline interferometry (VLBI) make extremely high-precision measurements of the jet from Swift J1644+57.

"Using the EVN telescope network we were able to measure the jet's position to a precision of 10 microarcseconds. That corresponds to the angular extent of a 2-euro coin on the Moon as seen from Earth. These are some of the sharpest measurements ever made by radio telescopes," says Jun Yang.

Thanks to the amazing precision possible with the network of radio telescopes, the scientists were able to search for signs of motion in the jet, despite its huge distance.

"We looked for motion close to the light speed in the jet, so-called superluminal motion. Over our three years of observations such movement should have been clearly detectable. But our images reveal instead very compact and steady emission - there is no apparent motion," continues Jun Yang.

The results give important insights into what happens when a star is destroyed by a supermassive black hole, but also how newly-launched jets behave in a pristine environment. Zsolt Paragi, Head of User Support at the Joint Institute for VLBI ERIC (JIVE) in Dwingeloo, Netherlands, and member of the team, explains why the jet appears to be so compact and stationary.

"Newly-formed relativistic ejecta decelerate quickly as they interact with the interstellar medium in the galaxy. Besides, earlier studies suggest we may be seeing the jet at a very small angle. That could contribute to the apparent compactness," he says.

The record-sharp and extremely sensitive observations would not have been possible without the full power of the many radio telescopes of different sizes which together make up the EVN, explains Tao An from the Shanghai Astronomical Observatory, P.R. China.

"While the largest radio telescopes in the network contribute to the great sensitivity, the larger field of view provided by telescopes like the 25-m radio telescopes in Sheshan and Nanshan (China), and in Onsala (Sweden) played a crucial role in the investigation, allowing us to simultaneously observe Swift J1644+57 and a faint reference source," he says.

Swift J1644+57 is one of the first tidal disruption events to be studied in detail, and it won't be the last.

"Observations with the next generation of radio telescopes will tell us more about what actually happens when a star is eaten by a black hole - and how powerful jets form and evolve right next to black holes," explains Stefanie Komossa, astronomer at the Max Planck Institute for Radio Astronomy in Bonn, Germany.

"In the future, new, giant radio telescopes like FAST (Five hundred meter Aperture Spherical Telescope) and SKA (Square Kilometre Array) will allow us to make even more detailed observations of these extreme and exciting events," concludes Jun Yang.

Research paper: "No Apparent Superluminal Motion in the First-Known Jetted Tidal Disruption Event Swift J1644+5734," J. Yang, Z. Paragi, A. J. van der Horst, L. I. Gurvits, R. M. Campbell, D. Giannios, T. An and S. Komossa, 2016 July 6, Monthly Notices of the Royal Astronomical Society Letters. The findings also will be presented at the European Week of Astronomy and Space Science in Athens, Greece, on Friday 8 July 2016, as part of the special session "Nanoradians on the Sky: VLBI Across the Mediterranean and Beyond."

 

 

The energy spectrum of particles will help make out black holes

 
‎Tuesday, ‎July ‎12, ‎2016, ‏‎10:34:22 AMGo to full article
Moscow, Russia (SPX) Jul 06, 2016 - Scientists from Moscow Institute of Physics and Technology (MIPT), the Institute for Theoretical and Experimental Physics, and the National Research University Higher School of Economics have devised a method of distinguishing black holes from compact massive objects that are externally indistinguishable from one another.

The method involves studying the energy spectrum of particles moving in the vicinity - in one case it will be continuous and in the other it will be discrete. The findings have been published in Physical Review D.

Black holes, which were predicted by Einstein's theory of general relativity, have an event horizon - a boundary beyond which nothing, even light, can return to the outside world. The radius of this boundary is called the Schwarzschild radius, in physical terms it is the radius of an object for which the escape velocity is greater than the speed of light, which means that nothing is able to overcome its gravity.

Black holes of stellar mass are the result of gravitational collapse which occurs at the time when a star "burns out" all its thermonuclear fuel and the force of the gas pressure can no longer resist gravity. If the star is massive enough, it collapses to a size smaller than the Schwarzschild radius and turns into a black hole.

However, time on the event horizon slows down so much that for an outside observer the collapsing process almost stops (if a ship falls into a black hole, for example, to an outside observer it will appear to be continually falling toward the horizon), therefore all the black holes we see are objects that are eternally collapsing.

Astrophysicists have not yet been able to "see" a black hole directly, but there are many objects that are "suspected" of being black holes. Most scientists are sure that in the centre of our galaxy there is a supermassive black hole; there are binary systems where one of the components is most likely a black hole.

However, some astrophysicists believe that there may be compact massive objects that fall very slightly short of black hole status; their range is only a little larger than the Schwarzschild radius. It may be the case that some of the "suspects" are in fact objects such as these. From the outside, however, they are not distinguishable from black holes.

Emil Akhmedov, Fedor Popov, and Daniil Kalinov devised a method to tell the difference between them, or more precisely the difference between compact massive objects and collapsing objects.

"We examined the scalar quantum field around a black hole and a compact object and found that around the collapsing object - the black hole, there are no bound states, but around the compact object there are," explains FedorPopov, a member of staff at MIPT's Laboratory of High Energy Physics.

He and his colleagues examined the behaviour of scalar particles (the spin of these particles is zero - an example of this could be the Higgs boson) in the vicinity of black holes and massive compact objects. The scientists derived analytical expressions for the energy spectrum of the particles. It was found that near the surface of an ultra-compact star with a radius slightly larger than the Schwarzschild radius there is a "potential hole" - an area of space where particles fall into a gravitational "trap".

The problem in this case is then similar to a simple task in quantum mechanics where the spectrum of the particles in the potential hole needs to be found. This spectrum is discrete, i.e. it has energy values where there are no particles. In simpler terms, the potential hole does not release particles of certain energies, and an "empty space" appears in the spectrum.

In the case of a black hole in the vicinity of a Schwarzschild sphere there are no stationary potentials as there is a constant process of collapse, the boundary of the "hole" moves away and the energy spectrum is continuous.

"We scatter a beam of particles on the object and observe the spectrum. And we see that if there are no discrete levels in the spectrum, it is a black hole, and if there are - it is a compact object. Although this particular study focused on spinless particles, we can assume that the spectrum of other types of particles would behave in the same way," says Fedor Popov.

He notes that so far this is only a theoretical study; we do not yet have the means to observe the spectra of particles in the vicinity of potential black holes - but now we are one step closer.

 

 

Large Hadron Collider finds three new particles, confirms fourth

 
‎Tuesday, ‎July ‎12, ‎2016, ‏‎10:34:22 AMGo to full article
Geneva, Switzerland (UPI) Jul 5, 2016 - Europe's largest particle accelerator, the Large Hadron Collider, is back in action. According to two newly published studies, its latest round of experiments yielded three new "exotic" particles and confirmed the existence of a fourth.

The newly identified particles are considered "exotic" because they contain four quarks, the building blocks of all matter. Particle physicists used to believe all particles were composed of mesons, a quark-antiquark pair, or baryons, three quarks -- but no more than three quarks. A litany of discoveries have shown otherwise.

The exotic particles are named for their reconstructed mass in megaelectronvolts -- a single electronvolt is approximately 160 zeptojoules, a tiny fraction of a joule. The particle X(4140), for example, has a mass of 4,140 megaelectronvolts. Scientists had previously observed X(4140); the latest findings confirm its existence.

Three heavier exotic particles spotted by CERN physicists -- X(4274), X(4500) and X(4700) -- had never been seen before.

"Even though the four particles all contain the same quark composition, they each have a unique internal structure, mass and their own sets of quantum numbers," researchers explained in a news release.

Continued research is necessary to further illuminate the idiosyncrasies of each exotic particle.

The latest findings are detailed in two papers, both published online in the open source journal Arxiv.

 

 

Method for Identifying Black Holes Connects Einstein's Equations with Observations

 
‎Tuesday, ‎July ‎12, ‎2016, ‏‎10:34:22 AMGo to full article
Rochester NY (SPX) Jul 03, 2016 - Rochester Institute of Technology professors have developed a faster, more accurate way to assess gravitational wave signals and infer the astronomical sources that made them. Their method directly compares data from the Laser Interferometer Gravitational-wave Observatory to cutting-edge numerical simulations of binary black holes, including simulations performed at RIT.

In a paper available online, the LIGO Scientific Collaboration reanalyzed the first gravitational wave detections using this method. Insights from these simulations indicate that the first detected black holes were slightly more similar in mass than previously thought. RIT authors on the paper include faculty Richard O'Shaughnessy, Manuela Campanelli, Carlos Lousto, John Whelan and Yosef Zlochower; postdoctoral researcher James Healy; graduate students Jacob Lange and Yuanhao Zhang; and undergraduate student Monica Rizzo and recent graduate Jackson Henry. They are all members of RIT's Center for Computational Relativity and Gravitation and the LIGO Scientific Collaboration.

"It is the first time numerical simulations of binary black holes are used directly to estimate the parameters of a binary and, in this paper, it is proved that this can be done to the highest accuracy," Lousto said.

A validation study of the method is being done by Lange, a Ph.D. student in RIT's astrophysical sciences and technology graduate program. "Our approach compares waveforms directly to numerical relativity simulations to reanalyze the first gravitational wave detection," he said.

Lange's research supports Lousto and O'Shaughnessy's efforts to enhance a new gravitational wave-data pipeline using targeted simulations. O'Shaughnessy presented the paper earlier this month at the Gravitational Wave Physics and Astronomy Workshop in Cape Cod, Mass.

"Most of the interesting information arrives at the end where the black hole does its most wild motions and all the cool physics of Einstein's theory really comes to the fore," said O'Shaughnessy, assistant professor in RIT's School of Mathematical Sciences. "We think by simulating the most interesting part and attaching the simple part, we'll be able to do some really interesting science that is not possible any other way."

RIT scientists played a key role in the LIGO Scientific Collaboration's landmark discovery. Their simulated signal independently verified the observed waveform produced by the black hole merger and helped confirm Einstein's general theory of relativity. This new study demonstrates the role of simulated signals in the analysis of gravitational waveforms.

"These simulations are what we have leveraged for all these years to get all the insight we have about how black holes merge and their gravitational radiation," O'Shaughnessy said. "They are the most complete and accurate models of binary black-hole coalescence."

Simulations of black holes with different masses and spins that match, or which are oddly aligned, require the complex mathematics of Einstein's strong field equations. O'Shaughnessy collaborated on the data pipeline with Lousto, a leader in the field of numerical relativity, who simulates black holes scenarios on supercomputers.

Their approach uses simulations to extract information about the black holes' properties directly from the gravitational wave data. By contrast, the initial analyzes of the first gravitational waves used approximations derived from previous simulations to gain insight.

"Richard's method allow us to avoid the intermediate step and is faster and more accurate," said Lousto, professor in RIT's School of Mathematical Sciences and fellow of the American Physical Society. "The method always improves itself because with every new simulation, it adapts. It can only get better."

Lousto's simulations apply the computational techniques from the 2005 landmark research he conducted with Campanelli, director of the RIT's Center for Computational Relativity and Gravitation and a member of the LIGO Scientific Collaboration, and Zlochower, associate professor in RIT's School of Mathematical Sciences.

Research paper: "Directly Comparing GW150914 with Numerical Solutions of Einstein's Equations for Binary Black Hole Coalescence," LIGO Scientific Collaboration and Virgo Collaboration, 2016

 

 

Clandestine Black Hole May Represent New Population

 
‎Tuesday, ‎July ‎12, ‎2016, ‏‎10:34:22 AMGo to full article
Boston MA (SPX) Jul 01, 2016 - Astronomers have combined data from NASA's Chandra X-ray Observatory, the Hubble Space Telescope and the National Science Foundation's Karl G. Jansky Very Large Array (VLA) to conclude that a peculiar source of radio waves thought to be a distant galaxy is actually a nearby binary star system containing a low-mass star and a black hole. This identification suggests there may be a vast number of black holes in our galaxy that have gone unnoticed until now.

For about two decades, astronomers have known about an object called VLA J213002.08+120904 (VLA J2130+12 for short). Although it is close to the line of sight to the globular cluster M15, most astronomers had thought that this source of bright radio waves was probably a distant galaxy.

Thanks to recent distance measurements with an international network of radio telescopes, including the EVN (European Very Long Baseline Interferometry Network) telescopes, the NSF's Green Bank Telescope and Arecibo Observatory, astronomers realized that VLA J2130+12 is at a distance of 7,200 light-years, showing that it is well within our own Milky Way galaxy and about five times closer than M15. A deep image from Chandra reveals it can only be giving off a very small amount of X-rays, while recent VLA data indicates the source remains bright in radio waves.

This new study indicates that VLA J2130+12 is a black hole a few times the mass of our Sun that is very slowly pulling in material from a companion star. At this paltry feeding rate, VLA J2130+12 was not previously flagged as a black hole since it lacks some of the telltale signs that black holes in binaries typically display.

"Usually, we find black holes when they are pulling in lots of material. Before falling into the black hole this material gets very hot and emits brightly in X-rays," said Bailey Tetarenko of the University of Alberta, Canada, who led the study. "This one is so quiet that it's practically a stealth black hole."

This is the first time a black hole binary system outside of a globular cluster has been initially discovered while it is in such a quiet state.

Hubble observations identified VLA J2130+12 with a star having only about one-tenth to one-fifth the mass of the Sun. The observed radio brightness and the limit on the X-ray brightness from Chandra allowed the researchers to rule out other possible interpretations, such as an ultra-cool dwarf star, a neutron star, or a white dwarf pulling material away from a companion star.

Because this study only covered a very small patch of sky, the implication is that there should be many of these quiet black holes around the Milky Way. The estimates are that tens of thousands to millions of these black holes could exist within our galaxy, about three to thousands of times as many as previous studies have suggested.

"Unless we were incredibly lucky to find one source like this in a small patch of the sky, there must be many more of these black hole binaries in our galaxy than we used to think," said co-author Arash Bahramian, also of the University of Alberta.

There are other implications of finding that VLA J2130+12 is relatively near to us.

"Some of these undiscovered black holes could be closer to the Earth than we previously thought," said Robin Arnason, a co-author from Western University, Canada "However there's no need to worry as even these black holes would still be many light-years away from Earth."

Sensitive radio and X-ray surveys covering large regions of the sky will need to be performed to uncover more of this missing population.

If, like many others, this black hole was formed in the plane of the Milky Way's disk, it would have needed a large kick at birth to launch it to its current position about 3,000 light-years above the plane of the galaxy.

Research paper: "The first low-mass black hole X-ray binary identified in quiescence outside of a globular cluster," B. E. Tetarenko et al., 2016, Astrophysical Journal

 

 

Seeds of supermassive black holes could be revealed

 
‎Tuesday, ‎July ‎12, ‎2016, ‏‎10:34:22 AMGo to full article
Durham, UK (SPX) Jun 29, 2016 - Gravitational waves captured by space-based detectors could help identify the origins of supermassive black holes, according to new computer simulations of the universe.

Scientists led by Durham University's Institute for Computational Cosmology ran the huge cosmological simulations that can be used to predict the rate at which gravitational waves caused by collisions between the monster black holes might be detected.

The amplitude and frequency of these waves could reveal the initial mass of the seeds from which the first black holes grew since they were formed 13 billion years ago and provide further clues about what caused them and where they formed, the researchers said.

The research is being presented at the Royal Astronomical Society's National Astronomy Meeting in Nottingham, UK. It was funded by the Science and Technology Facilities Council, the European Research Council and the Belgian Interuniversity Attraction Poles Program.

The study combined simulations from the EAGLE project - which aims to create a realistic simulation of the known universe inside a computer - with a model to calculate gravitational wave signals.

Two detections of gravitational waves caused by collisions between supermassive black holes should be possible each year using space-based instruments such as the Evolved Laser Interferometer Space Antenna (eLISA) detector that is due to launch in 2034, the researchers said.

In February the international LIGO and Virgo collaborations announced that they had detected gravitational waves for the first time using ground-based instruments and in June reported a second detection.

As eLISA will be in space - and will be at least 250,000 times larger than detectors on Earth - it should be able to detect the much lower frequency gravitational waves caused by collisions between supermassive black holes that are up to a million times the mass of our Sun.

Current theories suggest that the seeds of these black holes were the result of either the growth and collapse of the first generation of stars in the universe; collisions between stars in dense stellar clusters; or the direct collapse of extremely massive stars in the early universe.

As each of these theories predicts different initial masses for the seeds of supermassive black holes, the collisions would produce different gravitational wave signals.

This means that the potential detections by eLISA could help pinpoint the mechanism that helped create supermassive black holes and when in the history of the universe they formed.

Lead author Jaime Salcido, PhD student in Durham University's Institute for Computational Cosmology, said: "Understanding more about gravitational waves means that we can study the universe in an entirely different way.

"These waves are caused by massive collisions between objects with a mass far greater than our Sun.

"By combining the detection of gravitational waves with simulations we could ultimately work out when and how the first seeds of supermassive black holes formed."

Co-author Professor Richard Bower, of Durham University's Institute for Computational Cosmology, added: "Black holes are fundamental to galaxy formation and are thought to sit at the center of most galaxies, including our very own Milky Way.

"Discovering how they came to be where they are is one of the unsolved problems of cosmology and astronomy.

"Our research has shown how space based detectors will provide new insights into the nature of supermassive black holes."

Gravitational waves were first predicted 100 years ago by Albert Einstein as part of his general theory of relativity.

The waves are concentric ripples caused by violent events in the universe that squeeze and stretch the fabric of space time but most are so weak they cannot be detected.

LIGO detected gravitational waves using ground-based instruments, called interferometers, that use laser beams to pick up subtle disturbances caused by the waves.

eLISA will work in a similar way, detecting the small changes in distances between three satellites that will orbit the Sun in a triangular pattern connected by beams from lasers in each satellite.

In June it was reported that the LISA Pathfinder, the forerunner to eLISA, had successfully demonstrated the technology that opens the door to the development of a large space observatory capable of detecting gravitational waves in space.

Music from the Heavens - Gravitational Waves from Supermassive Black Hole Mergers in the EAGLE Simulations, J. Salcido, R. G. Bower et al., 2016, presented at the Royal Astronomical Society's National Astronomy Meeting at the University of Nottingham and submitted to Monthly Notices of the Royal Astronomical Society

 

 

Gravitational waves could reveal black hole seeds

 
‎Tuesday, ‎July ‎12, ‎2016, ‏‎10:34:22 AMGo to full article
Nottingham, UK (SPX) Jun 29, 2016 - Gravitational waves captured by space-based detectors could help identify the origins of supermassive black holes, according to new computer simulations of the universe. Scientists led by Durham University's Institute for Computational Cosmology ran the huge cosmological simulations that can be used to predict the rate at which gravitational waves caused by collisions between the monster black holes might be detected.

The amplitude and frequency of these waves could reveal the initial mass of the seeds from which the first black holes grew since they were formed 13 billion years ago and provide further clues about what caused them and where they formed, the researchers said.

The research will be presented on Monday, 27th June, at the National Astronomy Meeting 2016 in Nottingham. It was funded by the Science and Technology Facilities Council, the European Research Council and the Belgian Interuniversity Attraction Poles Program.

The study combined simulations from the EAGLE project - which aims to create a realistic simulation of the known universe inside a computer - with a model to calculate gravitational wave signals. Two detections of gravitational waves caused by collisions between supermassive black holes should be possible each year using space-based instruments such as the Evolved Laser Interferometer Space Antenna (eLISA) detector that is due to launch in 2034, the researchers said.

In February the international LIGO and Virgo collaborations announced that they had detected gravitational waves for the first time using ground-based instruments and in June reported a second detection. As eLISA will be in space - and will be at least 250,000 times larger than detectors on Earth - it should be able to detect the much lower frequency gravitational waves caused by collisions between supermassive black holes that are up to a million times the mass of our Sun.

Current theories suggest that the seeds of these black holes were the result of either the growth and collapse of the first generation of stars in the universe; collisions between stars in dense stellar clusters; or the direct collapse of extremely massive stars in the early universe.

As each of these theories predicts different initial masses for the seeds of supermassive black hole seeds, the collisions would produce different gravitational wave signals. This means that the potential detections by eLISA could help pinpoint the mechanism that helped create supermassive black holes and when in the history of the universe they formed.

Lead author Jaime Salcido, PhD student in Durham University's Institute for Computational Cosmology, said, "Understanding more about gravitational waves means that we can study the universe in an entirely different way. These waves are caused by massive collisions between objects with a mass far greater than our Sun. By combining the detection of gravitational waves with simulations we could ultimately work out when and how the first seeds of supermassive black holes formed."

Co- author Professor Richard Bower, of Durham University's Institute for Computational Cosmology, added, "Black holes are fundamental to galaxy formation and are thought to sit at the center of most galaxies, including our very own Milky Way. Discovering how they came to be where they are is one of the unsolved problems of cosmology and astronomy. Our research has shown how space based detectors will provide new insights into the nature of supermassive black holes."

Gravitational waves were first predicted 100 years ago by Albert Einstein as part of his general theory of relativity. The waves are concentric ripples caused by violent events in the universe that squeeze and stretch the fabric of space time but most are so weak they cannot be detected.

LIGO detected gravitational waves using ground-based instruments, called interferometers, that use laser beams to pick up subtle disturbances caused by the waves. eLISA will work in a similar way, detecting the small changes in distances between three satellites that will orbit the Sun in a triangular pattern connected by beams from lasers in each satellite.

In June it was reported that the LISA Pathfinder, the forerunner to eLISA, had successfully demonstrated the technology that opens the door to the development of a large space observatory capable of detecting gravitational waves in space.

Research paper: Music from the Heavens - Gravitational Waves from Supermassive Black Hole Mergers in the EAGLE Simulations, J. Salcido, R. G. Bower et al., 2016, presented at the Royal Astronomical Society's National Astronomy Meeting at the University of Nottingham and submitted to Monthly Notices of the Royal Astronomical Society

 

 

UChicago physicists first to see behavior of quantum materials in curved space

 
‎Thursday, ‎June ‎16, ‎2016, ‏‎7:27:06 AMGo to full article
Chicago IL (SPX) Jun 16, 2016 - Light and matter are typically viewed as distinct entities that follow their own, unique rules. Matter has mass and typically exhibits interactions with other matter, while light is massless and does not interact with itself. Yet, wave-particle duality tells us that matter and light both act sometimes like particles, and sometimes like waves.

Harnessing the shared wave nature of light and matter, researchers at the University of Chicago led by Neubauer Family Assistant Professor of Physics Jonathan Simon have used light to explore some of the most intriguing questions in the quantum mechanics of materials. The topic encompasses complex and non-intuitive phenomena that are often difficult to explain in non-technical language, but which carry important implications to specialists in the field.

In work published online June 6, 2016, in the journal Nature, Simon's group presents new experimental observations of a quantum Hall material near a singularity of curvature in space.

Quantum effects give rise to some of the most useful and promising properties of materials: they define standard units of measurement, give rise to superconductivity, and describe quantum computers. The quantum hall materials are one prominent example in which electrons are trapped in non-conducting circular orbits except at the edges of the material. There, electrons exhibit quantized resistance-free electrical conduction that is immune to disorder such as material impurities or surface defects.

Furthermore, electrons in quantum Hall materials do not transmit sound waves but instead have particle-like excitations, some of which are unlike any other particles ever discovered. Some of these materials also exhibit simultaneous quantum entanglement between millions of electrons, meaning that the electrons are so interconnected, the state of one instantly influences the state of all others. This combination of properties makes quantum Hall materials a promising platform for future quantum computation.

Researchers worldwide have spent the past 35 years delving into the mysteries of quantum Hall materials, but always in the same fundamental way. They use superconducting magnets to make very powerful magnetic fields and refrigerators to cool electronic samples to thousandths of a degree above absolute zero.

Trapping light...
In a new approach, Simon and his team demonstrated the creation of a quantum Hall material made up of light. "Using really good mirrors that are pointed at each other, we can trap light for a long time while it bounces back and forth many thousands of times between the mirrors," explained graduate student Nathan Schine.

In the UChicago experiment, photons travel back and forth between mirrors, while their side-to-side motion mimics the behavior of massive particles like electrons. To emulate a strong magnetic field, the researchers created a non-planar arrangement of four mirrors that makes the light twist as it completes a round trip. The twisting motion causes the photons to move like charged particles in a magnetic field, even though there is no actual magnet present.

"We make the photons spin, which leads to a force that has the same effect as a magnetic field," explained Schine. While the light is trapped, it behaves like the electrons in a quantum Hall material.

First, Simon's group demonstrated that they had a quantum Hall material of light. To do so, they shined infrared laser light at the mirrors. By varying the laser's frequency, Simon's team could map out precisely at which frequencies the laser was transmitted through the mirrors. These transmission frequencies, along with camera images of the transmitted light, gave a telltale signature of a quantum Hall state.

Next, the researchers took advantage of the precise control that advanced optical systems provide to place the photons in curved space, which has not been possible so far with electrons. In particular, they made the photons behave as if they resided on the surface of a cone.

...near a singularity
"We created a cone for light much like you might do by cutting a wedge of paper and taping the edges together," said postdoctoral fellow Ariel Sommer, also a co-author of the paper. "In this case, we imposed a three-fold symmetry on our light, which essentially divides the plane into three wedges and forces the light to repeat itself on each wedge."

The tip of a cone has infinite curvature - the singularity - so the researchers were able to study the effect of strong spatial curvature in a quantum Hall material. They observed that photons accumulated at the cone tip, confirming a previously untested theory of the quantum Hall effect in curved space.

Despite 20 years of interest, this is the first time an experiment has observed the behavior of quantum materials in curved space. "We are beginning to make our photons interact with each other," said Schine. "This opens up many possibilities, such as making crystalline or exotic quantum liquid states of light. We can then see how they respond to spatial curvature."

The researchers say this could be useful for characterizing a certain type of quantum computer that is built of quantum Hall materials.

"While quantum Hall materials were discovered in the eighties, they continue to reveal their fascinating secrets to this day," said Simon. "The final frontier is exploring the interplay of these beautiful materials with the curvature of space. That is what we've begun to explore with our photons."

Research paper: Synthetic Landau levels for photons

 

 

Scientists observe supermassive black hole feeding on cold gas

 
‎Thursday, ‎June ‎16, ‎2016, ‏‎7:27:06 AMGo to full article
Boston MA (SPX) Jun 14, 2016 - At the center of a galaxy cluster, 1 billion light years from Earth, a voracious, supermassive black hole is preparing for a chilly feast. For the first time, astronomers have detected billowy clouds of cold, clumpy gas streaming toward a black hole, at the center of a massive galaxy cluster. The clouds are traveling at speeds of up to 355 kilometers per second - that's almost 800,000 miles per hour - and may be only 150 light years away from its edge, almost certain to fall into the black hole, feeding its bottomless well.

The observations, which will be published in the journal Nature, represent the first direct evidence to support the hypothesis that black holes feed on clouds of cold gas. The results also suggest that fueling a black hole - a process known as accretion - is a whole lot messier than scientists had once thought.

"The simple model of black hole accretion consists of a black hole surrounded by a sphere of hot gas, and that gas accretes smoothly onto the black hole, and everything's simple, mathematically," says Michael McDonald, assistant professor of physics in MIT's Kavli Institute for Astrophysics and Space Research. "But this is the most compelling evidence that this process is not smooth, simple, and clean, but actually quite chaotic and clumpy."

Given the new observations, McDonald says black holes probably have two ways of feeding: For most of the time, they may slowly graze on a steady diet of diffuse hot gas. Once in a while, they may quickly gobble up clumps of cold gas as it comes nearby.

"This diffuse, hot gas is available to the black hole at a low level all the time, and you can have a steady trickle of it going in," McDonald says. "Every now and then, you can have a rainstorm with all these droplets of cold gas, and for a short amount of time, the black hole's eating very quickly. So the idea that there are these two dinner modes for black holes is a pretty nice result."

McDonald is a co-author on the paper, which was led by Grant Tremblay, an astronomer at Yale University.

Seeing shadows
The researchers made their detection using the Atacama Large Millimeter/submillimeter Array, or ALMA - one of the most powerful telescopes in the world, designed to see the oldest, most distant galaxies in the universe. The team focused ALMA's telescopes 1 billion light years away, on the central galaxy in the Abell 2597 Cluster, a galaxy that is some tens of thousands of light years across. This particular galaxy is among the brightest in the universe, as it is likely producing many new stars.

The team originally wanted to get a sense for how many stars this cluster was churning out, so they mapped all the cold gas within the cluster. This cold gas has cooled and condensed out of the diffuse halo of hot gas surrounding a cluster, forming clumps. It is the collapse of cold gas that creates new stars, especially in the cluster's central galaxy.

"In the center of a cluster, there's a single massive galaxy, the big daddy galaxy of the cluster," McDonald says. "It's sitting at the bottom of a gravitational funnel, and all the gas from a thousand galaxies is available to it. These are the galaxies that are the most massive, with the most massive black holes in the universe, and the most potential for star formation."

The researchers used ALMA to map the spectral signatures, or radio emissions, from the galaxy cluster, looking specifically for signatures of carbon monoxide, the presence of which usually indicates very cold gas, of minus 200 degrees Fahrenheit and below. They mapped carbon monoxide across the entire galaxy cluster and found that as they looked further into the cluster, they encountered progressively cooler gas, from millions of degrees Fahrenheit to subzero temperatures.

At the very center, just at the edge of the cluster's supermassive black hole, the researchers discovered something quite unexpected: the shadows of three very cold, very clumpy gas clouds. The shadows were cast against bright jets of material spewing from the black hole, suggesting that these clouds were very close to being consumed by the black hole.

"We got very lucky," McDonald says. "We could probably look at 100 galaxies like this and not see what we saw just by chance. Seeing three shadows at once is like discovering not just one exoplanet, but three in the first try. Nature was very kind in this case."

A high-energy feast
The team estimated the velocities of the three clouds to be 240, 275, and 355 kilometers per second, with all three headed toward the black hole. McDonald says these three cold gas clouds will likely not stream straight into the black hole but instead be absorbed into its accretion disc - the massive disc of material that will eventually spiral into the black hole.

He adds that while ALMA was only able to see three clouds of cold gas near the black hole, there may be even more in the vicinity, setting the black hole up for quite a feast.

"We're only seeing this tiny sliver," McDonald says. "If there are three clouds in just our line of sight, there might be millions of clouds all around. And there's a tremendous amount of energy in just these three clouds. So if we were to look at this thing a million years later, we might see that the black hole is in outburst - much brighter, with more powerful jets, because all this high-energy material is landing on it."

 

 

Black hole fed by cold intergalactic deluge

 
‎Thursday, ‎June ‎16, ‎2016, ‏‎7:27:06 AMGo to full article
Munich, Germany (SPX) Jun 14, 2016 - The new ALMA observation is the first direct evidence that cold dense clouds can coalesce out of hot intergalactic gas and plunge into the heart of a galaxy to feed its central supermassive black hole. It also reshapes astronomers' views on how supermassive black holes feed, in a process known as accretion.

Previously, astronomers believed that, in the largest galaxies, supermassive black holes fed on a slow and steady diet of hot ionised gas from the galaxy's halo. The new ALMA observations show that, when the intergalactic weather conditions are right, black holes can also gorge on a clumpy, chaotic downpour of giant clouds of very cold molecular gas.

"Although it has been a major theoretical prediction in recent years, this is one of the first unambiguous pieces of observational evidence for a chaotic, cold rain feeding a supermassive black hole," said Grant Tremblay, an astronomer with Yale University in New Haven, Connecticut, USA, former ESO Fellow, and lead author on the new paper. "It's exciting to think we might actually be observing this galaxy-spanning rainstorm feeding a black hole whose mass is about 300 million times that of the Sun."

Tremblay and his team used ALMA to peer into an unusually bright cluster of about 50 galaxies, collectively known as Abell 2597. At its core is a massive elliptical galaxy, descriptively named the Abell 2597 Brightest Cluster Galaxy. Suffusing the space between these galaxies is a diffuse atmosphere of hot ionised gas, which was previously observed with NASA's Chandra X-ray Observatory.

"This very, very hot gas can quickly cool, condense, and precipitate in much the same way that warm, humid air in Earth's atmosphere can spawn rain clouds and precipitation," Tremblay said. "The newly condensed clouds then rain in on the galaxy, fueling star formation and feeding its supermassive black hole."

Near the centre of this galaxy the researchers discovered just this scenario: three massive clumps of cold gas are careening toward the supermassive black hole in the galaxy's core at about a million kilometres per hour. Each cloud contains as much material as a million Suns and is tens of light-years across.

Normally, objects on that scale would be difficult to distinguish at these cosmic distances, even with ALMA's amazing resolution. They were revealed, however, by the billion-light-year-long "shadows" they cast toward Earth [1].

Additional data from the National Science Foundation's Very Long Baseline Array indicate that the gas clouds observed by ALMA are only about 300 light-years from the central black hole, essentially teetering on the edge of being devoured, in astronomical terms.

While ALMA was only able to detect three clouds of cold gas near the black hole, the astronomers speculate that there may be thousands like them in the vicinity, setting up the black hole for a continuing downpour that could fuel its activity for a long time.

The astronomers now plan to use ALMA to search for these "rainstorms" in other galaxies in order to determine whether such cosmic weather is as common as current theory suggests it might be.

This research was presented in a paper entitled "Cold, clumpy accretion onto an active supermassive black hole", by Grant R. Tremblay et al., to appear in the journal Nature on 9 June 2016.

 

 

NIST's super quantum simulator 'entangles' hundreds of ions

 
‎Thursday, ‎June ‎16, ‎2016, ‏‎7:27:06 AMGo to full article
Boulder CO (SPX) Jun 10, 2016 - Physicists at the National Institute of Standards and Technology (NIST) have "entangled" or linked together the properties of up to 219 beryllium ions (charged atoms) to create a quantum simulator. The simulator is designed to model and mimic complex physics phenomena in a way that is impossible with conventional machines, even supercomputers. The techniques could also help improve atomic clocks.

The new NIST system can generate quantum entanglement in about 10 times as many ions as any previous simulators based on ions, a scale-up that is crucial for practical applications. The behavior of the entangled ions rotating in a flat crystal just 1 millimeter in diameter can also be tailored or controlled to a greater degree than before.

Described in the June 10, 2016, issue of Science, NIST's latest simulator improves on the same research group's 2012 version by removing most of the earlier system's errors and instabilities, which can destroy fragile quantum effects.

"Here we get clear, indisputable proof the ions are entangled," NIST postdoctoral researcher Justin Bohnet said. "What entanglement represents in this case is a useful resource for something else, like quantum simulation or to enhance a measurement in an atomic clock."

In the NIST quantum simulator, ions act as quantum bits (qubits) to store information. Trapped ions are naturally suited to studies of quantum physics phenomena such as magnetism.

Quantum simulators might also help study problems such as how the universe began, how to engineer novel technologies (for instance, room-temperature superconductors or atom-scale heat engines), or accelerate the development of quantum computers. According to definitions used in the research community, quantum simulators are designed to model specific quantum processes, whereas quantum computers are universally applicable to any desired calculation.

Quantum simulators with hundreds of qubits have been made of other materials such as neutral atoms and molecules. But trapped ions offer unique advantages such as reliable preparation and detection of quantum states, long-lived states, and strong couplings among qubits at a variety of distances.

In addition to proving entanglement, the NIST team also developed the capability to make entangled ion crystals of varying sizes - ranging from 20 qubits up to hundreds. Even a slight increase in the number of particles makes simulations exponentially more complex to program and carry out. The NIST team is especially interested in modelling quantum systems of sizes just beyond the classical processing power of conventional computers.

"Once you get to 30 to 40 particles, certain simulations become difficult," Bohnet said. "That's the number at which full classical simulations start to fail. We check that our simulator works at small numbers of ions, then target the sweet spot in this midrange to do simulations that challenge classical simulations. Improving the control also allows us to more perfectly mimic the system we want our simulator to tell us about."

The ion crystals are held inside a Penning trap, which confines charged particles by use of magnetic and electric fields. The ions naturally form triangular patterns, useful for studying certain types of mag-netism.

NIST is the only laboratory in the world generating two-dimensional arrays of more than 100 ions. Based on lessons learned in the 2012 experiment, NIST researchers designed and assembled a new trap to generate stronger and faster interactions among the ions. The interaction strength is the same for all ions in the crystal, regardless of the distances between them.

The researchers used lasers with improved position and intensity control, and more stable magnetic fields, to engineer certain dynamics in the "spin" of the ions' electrons. Ions can be spin up (often envisioned as an arrow pointing up), spin down, or both at the same time, a quantum state called a super-position.

In the experiments, all the ions are initially in independent superpositions but are not communicating with each other. As the ions interact, their spins collectively morph into an entangled state involving most, or all of the entire crystal.

Researchers detected the spin state based on how much the ions fluoresced, or scattered laser light. When measured, unentangled ions collapse from a superposition to a simple spin state, creating noise, or random fluctuations, in the measured results. Entangled ions collapse together when measured, reducing the detection noise.

Crucially, the researchers measured a sufficient level of noise reduction to verify entanglement, results that agreed with theoretical predictions. This type of entanglement is called spin squeezing because it squeezes out (removes) noise from a target measurement signal and moves it to another, less import-ant aspect of the system. The techniques used in the simulator might someday contribute to the development of atomic clocks based on large numbers of ions (current designs use one or two ions).

"The reduction in the quantum noise is what makes this form of entanglement useful for enhancing ion and atomic clocks," Bohnet said. "Here, spin squeezing confirms the simulator is working correctly, because it produces the quantum fluctuations we are looking for."

The work was funded in part by the National Science Foundation, Army Research Office and Air Force Office of Scientific Research. Paper: J.G. Bohnet, B.C. Sawyer, J.W. Britton, M.L. Wall, A.M. Rey, M. Foss-Feig, and J.J. Bollinger. 2016. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science. June 10.

 

 

Why the Deep Space Atomic Clock is key for future space exploration

 
‎Thursday, ‎June ‎16, ‎2016, ‏‎7:27:06 AMGo to full article
Los Angeles CA (The Conversation) Jun 10, 2016 - We all intuitively understand the basics of time. Every day we count its passage and use it to schedule our lives. We also use time to navigate our way to the destinations that matter to us. In school we learned that speed and time will tell us how far we went in traveling from point A to point B; with a map we can pick the most efficient route - simple.

But what if point A is the Earth, and point B is Mars - is it still that simple? Conceptually, yes. But to actually do it we need better tools - much better tools.

At NASA's Jet Propulsion Laboratory, I'm working to develop one of these tools: the Deep Space Atomic Clock, or DSAC for short. DSAC is a small atomic clock that could be used as part of a spacecraft navigation system. It will improve accuracy and enable new modes of navigation, such as unattended or autonomous.

In its final form, the Deep Space Atomic Clock will be suitable for operations in the solar system well beyond Earth orbit. Our goal is to develop an advanced prototype of DSAC and operate it in space for one year, demonstrating its use for future deep space exploration.

Speed and time tell us distance
To navigate in deep space, we measure the transit time of a radio signal traveling back and forth between a spacecraft and one of our transmitting antennae on Earth (usually one of NASA's Deep Space Network complexes located in Goldstone, California; Madrid, Spain; or Canberra, Australia). We know the signal is traveling at the speed of light, a constant at approximately 300,000 km/sec (186,000 miles/sec). Then, from how long our "two-way" measurement takes to go there and back, we can compute distances and relative speeds for the spacecraft.

For instance, an orbiting satellite at Mars is an average of 250 million kilometers from Earth. The time the radio signal takes to travel there and back (called its two-way light time) is about 28 minutes. We can measure the travel time of the signal and then relate it to the total distance traversed between the Earth tracking antenna and the orbiter to better than a meter, and the orbiter's relative speed with respect to the antenna to within 0.1 mm/sec.

We collect the distance and relative speed data over time, and when we have a sufficient amount (for a Mars orbiter this is typically two days) we can determine the satellite's trajectory.

Measuring time, way beyond Swiss precision
Fundamental to these precise measurements are atomic clocks. By measuring very stable and precise frequencies of light emitted by certain atoms (examples include hydrogen, cesium, rubidium and, for DSAC, mercury), an atomic clock can regulate the time kept by a more traditional mechanical (quartz crystal) clock. It's like a tuning fork for timekeeping. The result is a clock system that can be ultra stable over decades.

The precision of the Deep Space Atomic Clock relies on an inherent property of mercury ions - they transition between neighboring energy levels at a frequency of exactly 40.5073479968 GHz. DSAC uses this property to measure the error in a quartz clock's "tick rate," and, with this measurement, "steers" it towards a stable rate. DSAC's resulting stability is on par with ground-based atomic clocks, gaining or losing less than a microsecond per decade.

Continuing with the Mars orbiter example, ground-based atomic clocks at the Deep Space Network error contribution to the orbiter's two-way light time measurement is on the order of picoseconds, contributing only fractions of a meter to the overall distance error. Likewise, the clocks' contribution to error in the orbiter's speed measurement is a minuscule fraction of the overall error (1 micrometer/sec out of the 0.1 mm/sec total).

The distance and speed measurements are collected by the ground stations and sent to teams of navigators who process the data using sophisticated computer models of spacecraft motion. They compute a best-fit trajectory that, for a Mars orbiter, is typically accurate to within 10 meters (about the length of a school bus). Sending an atomic clock to deep space

The ground clocks used for these measurements are the size of a refrigerator and operate in carefully controlled environments - definitely not suitable for spaceflight. In comparison, DSAC, even in its current prototype form as seen above, is about the size of a four-slice toaster. By design, it's able to operate well in the dynamic environment aboard a deep-space exploring craft. One key to reducing DSAC's overall size was miniaturizing the mercury ion trap. Shown in the figure above, it's about 15 cm (6 inches) in length. The trap confines the plasma of mercury ions using electric fields. Then, by applying magnetic fields and external shielding, we provide a stable environment where the ions are minimally affected by temperature or magnetic variations. This stable environment enables measuring the ions' transition between energy states very accurately.

The DSAC technology doesn't really consume anything other than power. All these features together mean we can develop a clock that's suitable for very long duration space missions.

Because DSAC is as stable as its ground counterparts, spacecraft carrying DSAC would not need to turn signals around to get two-way tracking. Instead, the spacecraft could send the tracking signal to the Earth station or it could receive the signal sent by the Earth station and make the tracking measurement on board. In other words, traditional two-way tracking can be replaced with one-way, measured either on the ground or on board the spacecraft.

So what does this mean for deep space navigation? Broadly speaking, one-way tracking is more flexible, scalable (since it could support more missions without building new antennas) and enables new ways to navigate.

DSAC advances us beyond what's possible today
The Deep Space Atomic Clock has the potential to solve a bunch of our current space navigation challenges.

+ Places like Mars are "crowded" with many spacecraft: Right now, there are five orbiters competing for radio tracking. Two-way tracking requires spacecraft to "time-share" the resource. But with one-way tracking, the Deep Space Network could support many spacecraft simultaneously without expanding the network. All that's needed are capable spacecraft radios coupled with DSAC.

+ With the existing Deep Space Network, one-way tracking can be conducted at a higher-frequency band than current two-way. Doing so improves the precision of the tracking data by upwards of 10 times, producing range rate measurements with only 0.01 mm/sec error.

+ One-way uplink transmissions from the Deep Space Network are very high-powered. They can be received by smaller spacecraft antennas with greater fields of view than the typical high-gain, focused antennas used today for two-way tracking. This change allows the mission to conduct science and exploration activities without interruption while still collecting high-precision data for navigation and science. As an example, use of one-way data with DSAC to determine the gravity field of Europa, an icy moon of Jupiter, can be achieved in a third of the time it would take using traditional two-way methods with the flyby mission currently under development by NASA.

+ Collecting high-precision one-way data on board a spacecraft means the data are available for real-time navigation. Unlike two-way tracking, there is no delay with ground-based data collection and processing. This type of navigation could be crucial for robotic exploration; it would improve accuracy and reliability during critical events - for example, when a spacecraft inserts into orbit around a planet. It's also important for human exploration, when astronauts will need accurate real-time trajectory information to safely navigate to distant solar system destinations.

Countdown to DSAC launch
The DSAC mission is a hosted payload on the Surrey Satellite Technology Orbital Test Bed spacecraft. Together with the DSAC Demonstration Unit, an ultra stable quartz oscillator and a GPS receiver with antenna will enter low altitude Earth orbit once launched via a SpaceX Falcon Heavy rocket in early 2017.

While it's on orbit, DSAC's space-based performance will be measured in a yearlong demonstration, during which Global Positioning System tracking data will be used to determine precise estimates of OTB's orbit and DSAC's stability. We'll also be running a carefully designed experiment to confirm DSAC-based orbit estimates are as accurate or better than those determined from traditional two-way data. This is how we'll validate DSAC's utility for deep space one-way radio navigation.

In the late 1700s, navigating the high seas was forever changed by John Harrison's development of the H4 "sea watch." H4's stability enabled seafarers to accurately and reliably determine longitude, which until then had eluded mariners for thousands of years. Today, exploring deep space requires traveling distances that are orders of magnitude greater than the lengths of oceans, and demands tools with ever more precision for safe navigation. DSAC is at the ready to respond to this challenge.

Source The Conversation

 

 

This black hole has an appetite for cold, cosmic rain

 
‎Thursday, ‎June ‎16, ‎2016, ‏‎7:27:06 AMGo to full article
New Haven CT (SPX) Jun 10, 2016 - An intergalactic gas cloud is sometimes a dish best served cold. In a new study to be published in the journal Nature, a Yale-led team of astronomers found a supermassive black hole about to devour clouds of cold, clumpy gas hurtling toward it. Prior to this, scientists believed that supermassive black holes in the largest galaxies fed on a slow, steady diet of hot, ionized gas from the galaxy's halo.

"Although it has been a major theoretical prediction in recent years, this is one of the first unambiguous pieces of observational evidence for a chaotic, cold 'rain' feeding a supermassive black hole," said Yale astronomer Grant Tremblay, lead author of the study.

"It's exciting to think we might actually be observing this galaxy-spanning 'rainstorm' feeding a black hole whose mass is about 300 million times that of our Sun."

The discovery offers new insight into the way black holes ingest fuel, a process called accretion. The most common way for black holes to feed is by taking in hot, ionized gas that spirals in slowly from a surrounding disc of cosmic material.

Tremblay's team analyzed data from the Atacama Large Millimeter/submillimeter Array (ALMA) telescope in Chile to map the locations and movement of cold molecular gas in the Abell 2597 Cluster - a knot of about 50 galaxies located 1 billion light years from Earth.

The researchers detected a trio of cold gas clouds, traveling as fast as a million kilometers per hour, heading toward a black hole in a galaxy at the center of the cluster. Each gas cloud contained as much material as a million Suns and measured tens of light-years across.

"We can't know whether all or only part of this 'meal' of cold gas will ultimately fall into the black hole, but the ALMA data spectacularly highlights the importance of this kind of cold accretion," said co-author C. Megan Urry, the Israel Munson Professor of Physics and Astronomy at Yale.

Added co-author Louise Edwards, who is an astronomy lecturer and researcher at Yale: "Since we know so little about the mechanics of how the AGN (active galactic nucleus) interacts with the rest of the galaxy, this is a real step forward."

The researchers said they plan to use ALMA to search for similar "rainstorms" in other galaxies to determine if such cosmic weather is a common phenomenon.

 

 

Black hole deluged by cold intergalactic 'rain'

 
‎Thursday, ‎June ‎16, ‎2016, ‏‎7:27:06 AMGo to full article
Charlottesville VA (SPX) Jun 10, 2016 - An international team of astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) has witnessed a never-before-seen cosmic weather event - a cluster of towering intergalactic gas clouds raining in on the supermassive black hole at the center of an elliptical galaxy one billion light-years from Earth.

The new ALMA observations are the first direct evidence that cold dense clouds can coalesce out of hot intergalactic gas and plunge into the heart of a galaxy to feed its central supermassive black hole. They also reshape astronomers' views on how supermassive black holes feed through a process known as accretion.

Previously, astronomers believed that, in the largest galaxies, supermassive black holes fed on a slow and steady diet of hot ionized gas from the galaxy's halo. The new ALMA observations show that, when the intergalactic weather conditions are right, black holes can also gorge on a clumpy, chaotic downpour of giant, very cold clouds of molecular gas.

"This so-called cold, chaotic accretion has been a major theoretical prediction in recent years, but this is one of the first unambiguous pieces of observational evidence for a chaotic, cold 'rain' feeding a supermassive black hole," said Grant Tremblay, an astronomer with Yale University in New Haven, Connecticut, and lead author on a paper appearing in the journal Nature. "It's exciting to think we might actually be observing this galaxy-spanning 'rainstorm' feeding a black hole whose mass is about 300 million times that of our Sun."

Tremblay and his team used ALMA to peer into a phenomenally bright cluster of about 50 galaxies, collectively known as Abell 2597. At its core is a singular massive elliptical galaxy, pragmatically dubbed the Abell 2597 Brightest Cluster Galaxy. Suffusing the space between these galaxies is a diffuse atmosphere of hot, ionized plasma, which was previously observed with NASA's Chandra X-ray Observatory.

"This very, very hot gas can quickly cool, condense, and precipitate in much the same way that warm, humid air in Earth's atmosphere can spawn rain clouds and precipitation," Tremblay said. "The newly condensed clouds then rain in on the galaxy, fueling star formation and feeding its supermassive black hole."

Near the center of this galaxy, the researchers discovered this exact scenario: three massive clumps of cold gas careening toward the supermassive black hole in the galaxy's core at 300 kilometers per second (roughly 670,000 miles per hour). Each cloud contains as much material as a million Suns and is tens of light-years across.

Normally, objects on that scale would be difficult to distinguish at these cosmic distances, even with ALMA's amazing resolution.

They were revealed, however, by the billion light-year-long "shadows" they cast toward Earth. These shadows, known as absorption features, were formed by the in-falling gas clouds blocking out a portion of the bright background millimeter-wavelength light, which is emitted by electrons spiraling around magnetic fields very near the central supermassive black hole.

Additional data from the National Science Foundation's Very Long Baseline Array indicate that the gas clouds observed by ALMA are approximately 300 light-years from the central black hole, essentially teetering on the edge of being devoured, in astronomical terms.

While ALMA was only able to detect three of these clouds, the astronomers speculate that there may be thousands like them in the vicinity, setting up the black hole for a continued downpour that could fuel its activity well into the future.

The astronomers now plan to use ALMA in a broader search for these "rainstorms" in other galaxies to determine if such cosmic weather is as common as current theory suggests it to be.

 

 

Revisiting trajectories at the quantum scale

 
‎Thursday, ‎June ‎16, ‎2016, ‏‎7:27:06 AMGo to full article
Washington DC (SPX) Jun 08, 2016 - There is a gap in the theory explaining what is happening at the macroscopic scale, in the realm of our everyday lives, and at the quantum level, at microscopic scale. In this paper published in EPJ D, Holger Hofmann from the Graduate School of Advanced Sciences of Matter at Hiroshima University, Japan, reveals that the assumption that quantum particles move because they follow a precise trajectory over time has to be called into question.

Instead, he claims that the notion of trajectory is a dogmatic bias inherited from our interpretation of everyday experience at the macroscopic scale. The paper shows that trajectories only emerge at the macroscopic limit, as we can neglect the complex statistics of quantum correlations in cases of low precision.

The simple reason why it is wrong to assume that microscopic trajectories exist is because, in quantum mechanics, we can only approximately determine position and speed. This is due to a law of quantum physics, called the Heisenberg uncertainty principle, which prevents the experimental observation of trajectories and other continuous changes in time.

Hofmann shows that this uncertainty of time evolution is a result of the fundamental laws of motion. At the macroscopic limit, motion is described by a change in time along a trajectory of fixed energy.

This relation between energy and time can be represented by an action. And this action is the origin of the mysterious effects of quantum coherent superimpositions and quantum interferences. The paper clarifies the role of actions by deriving equations for them that work equally well for quantum dynamics and for classical trajectories.

The paper thus explains for the first time why Planck's fundamental constant (h-bar or ?) can be used to objectively separate and distinguish macroscopic experience from microscopic physics. Indeed, h-bar identifies a fundamental scale at which the approximate separation of a motion from the interactions needed to observe that motion breaks down.

Planck's fundamental constant therefore identifies a fundamental scale where there is an effective cross-over from observable realities to quantum mechanical laws of causality, where the action appears as a quantum phase (i.e one of the many alternative phases for a quantum scale system).

Research paper: H. F. Hofmann (2016), On the fundamental role of dynamics in quantum physics, Eur. Phys. J. D 70:118, DOI 10.1140/epjd/e2016-70086-8

 

 

At the LHC, charmed twins will soon be more common than singles

 
‎Thursday, ‎June ‎16, ‎2016, ‏‎7:27:06 AMGo to full article
Krakow, Poland (SPX) Jun 10, 2016 - In the range of energies penetrated by the LHC accelerator, a new mechanism of the creation of particles is becoming more prominent, say scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences in Krakow. The comparison between theoretical predictions and test data leaves no doubt: the energy in collisions is now so great that some of the elementary particles, mesons containing charm quarks, are beginning to emerge in pairs as often as single ones - and even more often.

A proton-proton collision is an extremely complex physical process of interactions wherein a variety of different particles arise. So far, today's particle accelerators (RHIC, Tevatron and now the LHC) studying the products of such collisions have recorded, among others, D0 mesons appearing one by one. Recently, however, the LHC has been accelerating protons to their limits, and in the new energy an interesting effect has been observed: where once only solo D0 mesons were formed, they are now appearing in pairs.

Scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Krakow have explained the essence of this phenomenon and showed that with increasing energy, it undoubtedly plays a dominant role in the production of charm particles. The latest research, published in the journal Physics Letters B, was carried out in cooperation with Russian physicists from the Samara National Research University.

"A few years ago, we predicted that collisions of protons at sufficiently high energy should result in more charm mesons produced in pairs rather than alone. Our latest publication not only describes in detail why this happens, but it also proves that in the LHC this effect is clearly visible," says Prof. Antoni Szczurek (IFJ PAN).

According to the Standard Model currently used by physicists, particles considered to be elementary perform different functions. Bosons are carriers of forces: photons are related to electromagnetism, gluons are responsible for strong interactions, and bosons W+, W- and Z0 mediate weak interactions.

Matter is formed by particles called fermions. These include leptons (electrons, muons, tau particles and their associated neutrinos) and quarks (down, up, strange, charm, beautiful and top). The first three types of quarks are called light while the last three are called heavy. In addition, each quark and lepton has its antimatter partner. Complementing the whole is the Higgs boson, which gives particles mass (except for gluons and photons).

In our everyday world heavy quarks are present in small amounts and only appear for an extremely short time, mainly in the Earth's atmosphere. All visible and stable material of which atoms are constructed, including protons and neutrons, consists of up and down quarks. But when it comes to collisions of particles at sufficient energies heavy quarks may arise. In the case of charm quarks (the least massive heavy quarks) the dominant process of their creation is the fusion of two gluons.

In the LHC this occurs during proton-proton collisions, formed by the merger of quark-antiquark pairs. Neither a quark or an antiquark can stand alone, so they quickly form pairs with other quarks. When one of the quarks is a charm quark, the particle is called a meson D; when one of them is a charm antiquark, an antimeson D is the result.

"At lower energies two particles usually arise from a collision: the D0 meson and its antimeson. We have shown that the energies at the LHC, however, are so high that in the course of a collision gluons are not scatter only once, but twice or even more. The result of a single collision can then be numerous D0 mesons, plus, of course, appropriate antimesons", explains Prof. Szczurek.

Physicists often call quarks and gluons partons. The phenomenon of multiple parton scattering is already well-known, but had not been dealt with more closely because it never played a significant role in the investigated processes. Now scientists at IFJ PAN have shown that the situation has changed.

Energies of accelerators are already so high that multiple parton scattering has become the leading mechanism responsible for the production of charm mesons and antimesons. Theoretical analysis of the measurements collected were supported by a group at the LHCb, leading one of the four major experiments carried out at the LHC.

"The data from the LHCb experiment have shown many cases where instead of one D0 meson we have two of them. It is precisely the effect that we expected: production of twins is becoming as likely as the production of single mesons. In future accelerators, such as the already designed Future Circular Collider, the LHC's successor, this phenomenon will play quite a dominant role in the production of charm particles. Perhaps then we will see collisions with a resulting effect of not only two, but three or more D mesons," says Dr. Rafa? Maciula (IFJ PAN).

Potentially, multiple parton scattering can lead to the formation of mesons containing other heavy quarks, such as beauty quarks. The calculations of Krakow physicists, however, show that at current energies of collisions in the LHC these processes are much less likely. It has to do with the masses of the quarks: the greater the mass, the less likely they will be produced, and beauty quarks are significantly heavier than their charm counterparts.

"For now all we can say for sure is that the production of twin charm mesons seems to be much more likely than twin beauty mesons," says Prof. Szczurek with a wink.

The analysis and prediction of physicists from the IFJ PAN are important not only for the future designers of large particle accelerators, but also for contemporary experiments on the registration of neutrinos coming from outer space, such as the famous IceCube detector in Antarctica.

Physical and technological limitations mean that neutrino detectors cannot be built in space. Meanwhile, there is a risk that some of the neutrinos registered by the device on or below the Earth's surface are formed by the action of high-energy cosmic rays in the atmosphere of our planet.

Colliding with atoms and molecules of the atmosphere, cosmic rays can in fact create charm quarks, which are then transformed into short-lived D mesons. The problem is that some of the decay products of D mesons may just be neutrinos and antineutrinos. Research on multiple scattering of partons can therefore help in determining how many neutrinos observed in detectors actually came to us from the depths of space, and how much is just noise resulting from the presence of the atmosphere.

 

 

Algorithm could construct first images of black holes

 
‎Friday, ‎June ‎10, ‎2016, ‏‎3:06:09 AMGo to full article
Boston MA (SPX) Jun 09, 2016 - Researchers from MIT's Computer Science and Artificial Intelligence Laboratory and Harvard University have developed a new algorithm that could help astronomers produce the first image of a black hole.

The algorithm would stitch together data collected from radio telescopes scattered around the globe, under the auspices of an international collaboration called the Event Horizon Telescope. The project seeks, essentially, to turn the entire planet into a large radio telescope dish.

"Radio wavelengths come with a lot of advantages," says Katie Bouman, an MIT graduate student in electrical engineering and computer science, who led the development of the new algorithm. "Just like how radio frequencies will go through walls, they pierce through galactic dust. We would never be able to see into the center of our galaxy in visible wavelengths because there's too much stuff in between."

But because of their long wavelengths, radio waves also require large antenna dishes. The largest single radio-telescope dish in the world has a diameter of 1,000 feet, but an image it produced of the moon, for example, would be blurrier than the image seen through an ordinary backyard optical telescope.

"A black hole is very, very far away and very compact," Bouman says. "It's equivalent to taking an image of a grapefruit on the moon, but with a radio telescope. To image something this small means that we would need a telescope with a 10,000-kilometer diameter, which is not practical, because the diameter of the Earth is not even 13,000 kilometers."

The solution adopted by the Event Horizon Telescope project is to coordinate measurements performed by radio telescopes at widely divergent locations. Currently, six observatories have signed up to join the project, with more likely to follow.

But even twice that many telescopes would leave large gaps in the data as they approximate a 10,000-kilometer-wide antenna. Filling in those gaps is the purpose of algorithms like Bouman's.

Bouman will present her new algorithm - which she calls CHIRP, for Continuous High-resolution Image Reconstruction using Patch priors - at the Computer Vision and Pattern Recognition conference in June. She's joined on the conference paper by her advisor, professor of electrical engineering and computer science Bill Freeman, and by colleagues at MIT's Haystack Observatory and the Harvard-Smithsonian Center for Astrophysics, including Sheperd Doeleman, director of the Event Horizon Telescope project.

Hidden delays
The Event Horizon Telescope uses a technique called interferometry, which combines the signals detected by pairs of telescopes, so that the signals interfere with each other. Indeed, CHIRP could be applied to any imaging system that uses radio interferometry.

Usually, an astronomical signal will reach any two telescopes at slightly different times. Accounting for that difference is essential to extracting visual information from the signal, but the Earth's atmosphere can also slow radio waves down, exaggerating differences in arrival time and throwing off the calculation on which interferometric imaging depends.

Bouman adopted a clever algebraic solution to this problem: If the measurements from three telescopes are multiplied, the extra delays caused by atmospheric noise cancel each other out. This does mean that each new measurement requires data from three telescopes, not just two, but the increase in precision makes up for the loss of information.

Preserving continuity
Even with atmospheric noise filtered out, the measurements from just a handful of telescopes scattered around the globe are pretty sparse; any number of possible images could fit the data equally well. So the next step is to assemble an image that both fits the data and meets certain expectations about what images look like. Bouman and her colleagues made contributions on that front, too.

The algorithm traditionally used to make sense of astronomical interferometric data assumes that an image is a collection of individual points of light, and it tries to find those points whose brightness and location best correspond to the data. Then the algorithm blurs together bright points near each other, to try to restore some continuity to the astronomical image.

To produce a more reliable image, CHIRP uses a model that's slightly more complex than individual points but is still mathematically tractable. You could think of the model as a rubber sheet covered with regularly spaced cones whose heights vary but whose bases all have the same diameter.

Fitting the model to the interferometric data is a matter of adjusting the heights of the cones, which could be zero for long stretches, corresponding to a flat sheet. Translating the model into a visual image is like draping plastic wrap over it: The plastic will be pulled tight between nearby peaks, but it will slope down the sides of the cones adjacent to flat regions. The altitude of the plastic wrap corresponds to the brightness of the image. Because that altitude varies continuously, the model preserves the natural continuity of the image.

Of course, Bouman's cones are a mathematical abstraction, and the plastic wrap is a virtual "envelope" whose altitude is determined computationally. And, in fact, mathematical objects called splines, which curve smoothly, like parabolas, turned out to work better than cones in most cases. But the basic idea is the same.

Prior knowledge
Finally, Bouman used a machine-learning algorithm to identify visual patterns that tend to recur in 64-pixel patches of real-world images, and she used those features to further refine her algorithm's image reconstructions. In separate experiments, she extracted patches from astronomical images and from snapshots of terrestrial scenes, but the choice of training data had little effect on the final reconstructions.

Bouman prepared a large database of synthetic astronomical images and the measurements they would yield at different telescopes, given random fluctuations in atmospheric noise, thermal noise from the telescopes themselves, and other types of noise. Her algorithm was frequently better than its predecessors at reconstructing the original image from the measurements and tended to handle noise better. She's also made her test data publicly available online for other researchers to use.

 

 

Black Holes Might Not be Dead-ends After All

 
‎Friday, ‎June ‎10, ‎2016, ‏‎3:06:09 AMGo to full article
Lisbon Portugal (SPX) Jun 09, 2016 - A physical body might be able to cross a wormhole, in spite of the extreme tidal forces, suggests a new study by Rubiera-Garcia, of Instituto de Astrofisica e Ciencias do Espaco (IA , and his team. This result, published in the journal Classical and Quantum Gravity, is supported by the fact that the interactions between the different parts of the body, which hold it together, are preserved. The team was invited by the journal editors to write an insight article that was published online this week.

In their previous work, the authors arrived at theoretical descriptions of black holes without a singularity, that bizarre and infinitesimally small point where space and time ends abruptly. What they found at the centre of a black hole, and without actually being in search of one, was a spherical and finite size wormhole structure.

Diego Rubiera-Garcia, of IA and Faculdade de Ciencias da Universidade de Lisboa, commented on how the team solved the singularity problem: "What we did was to reconsider a fundamental question on the relation between the gravity and the underlying structure of space-time. In practical terms, we dropped one assumption that holds in general relativity, but there is no a priori reason for it to hold in extensions of this theory."

Presented with this wormhole structure of finite size, where space and time continue past and beyond the black hole and into another part of the Universe, the authors then inquired about the fate of a physical object venturing into it. They asked if a chair, a scientist, or a spacecraft, would withstand the intense gravitational field and retain its unity as a body through the journey, and also to what extent would be the damage.

In their study, a physical body approaching a black hole is analysed as an aggregation of points interconnected by physical or chemical interactions holding it together.

"Each particle of the observer follows a geodesic line determined by the gravitational field. Each geodesic feels a slightly different gravitational force, but the interactions among the constituents of the body could nonetheless sustain the body," Rubiera-Garcia said.

General relativity theory predicts that a body approaching a black hole will be crushed along one direction and stretched along another. As the wormhole radius is finite, the authors demonstrate that the body will be crushed just as much as the size of the wormhole. Instead of converging to an infinitesimal separation, the so called singularity, geodesic lines will still be apart by a distance greater than zero.

In their work, the authors show that the time spent by a light ray in a round trip between two parts of the body is always finite. Thus, different parts of the body will still establish physical or chemical interactions and, consequently, cause and effect still apply all the way across the throat of the wormhole.

We can then imagine that finite forces, no matter how strong they would have to be, could compensate for the impact of the gravitational field near and inside the wormhole on a physical body traversing it. At least, according to these study, there isn't anything beyond all hopes, and the passage to another region of the Universe might be feasible.

Francisco Lobo, of IA and Faculdade de Ciencias da Universidade de Lisboa, leader of the Cosmology group at IA, said: "The authors' insights into the concepts of space-time singularities and curvature divergences are representative of the fundamental theoretical research carried out at the IA, going beyond Einstein's General Relativity. This research will also probably be important to understand these difficult concepts for the fate of the Universe, in a plethora of cosmological models."

Research paper: "Wormholes can fix black holes"

 

 

Probing the geometry of energy bands

 
‎Friday, ‎June ‎10, ‎2016, ‏‎3:06:09 AMGo to full article
Munich, Germany (SPX) Jun 06, 2016 - Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich and the Max Planck Institute for Quantum Optics (MPQ) have devised a new interferometer to probe the geometry of band structures. The geometry and topology of electronic states in solids play a central role in a wide range of modern condensed-matter systems, including graphene and topological insulators.

However, experimentally accessing this information has proven to be challenging, especially when the bands are not well isolated from one another.

As reported by Tracy Li et al. in Science, an international team of researchers led by Professor Immanuel Bloch and Dr. Ulrich Schneider at LMU Munich and the Max Planck Institute of Quantum Optics has devised a straightforward method with which to probe band geometry using ultracold atoms in an optical lattice.

Their method, which combines the controlled transport of atoms through the energy bands with atom interferometry, is an important step in the endeavor to investigate geometric and topological phenomena in synthetic band structures.

A wide array of fundamental issues in condensed-matter physics, such as why some materials are insulators while others are metals, can be understood simply by examining the energies of the material's constituent electrons.

Indeed, band theory, which describes these electron energies, was one of the earliest triumphs of quantum mechanics, and has driven many of the technological advances of our time, from the computer chips in our laptops to the liquid-crystal displays on our smartphones. We now know, however, that traditional band theory is incomplete.

Among the most surprising and fruitful developments in modern condensed-matter physics was the realization that band structure involves more than the just the electron energies - the geometric form of the bands also plays an important role.

Indeed, this geometric contribution is responsible for much of the exotic physics in newly discovered materials such as graphene or topological insulators, and underlies a variety of exciting technological possibilities from spintronics to topological quantum computing. It is, however, notoriously difficult to access this information experimentally.

Now, an international team of researchers led by Immanuel Bloch (Professor of Experimental Physics at LMU Munich and a Director of the Max Planck Institute of Quantum Optics (MPQ)) has devised a straightforward method to probe band geometry using ultracold atoms in an optical lattice, a synthetic crystal formed from standing waves of light. Their method relies on creating a system that can be described by a quantity known as the Wilson line, and the experimental tests performed at LMU and the MPQ have verified that the technique allows one to explore the geometry of band structure.

Although originally formulated in the context of quantum chromodynamics, it turns out that Wilson lines also describe the evolution of degenerate quantum states, i.e., quantum states with the same energy.

Applied to condensed-matter systems, the elements of the Wilson line directly encode the geometric structure of the bands. Therefore, to access the band geometry, the researchers need only to access the Wilson line elements.

The problem, however, is that the bands of a solid are generally not degenerate. However, the researchers realized that there was a way to get around this: When moved fast enough in momentum space, the atoms no longer feel the effect of the energy bands and their behavior is influenced only by the essential geometric information. In this regime, two bands with different energies behave like two bands with the same energy.

In their work, the researchers first cooled atoms to quantum degeneracy. The atoms were then placed into an optical lattice formed by laser beams to realize a system that mimics the behavior of electrons in a solid, but without the added complexities of real materials.

In addition to being exceptionally clean, optical lattices are highly tunable - different types of lattice structures can be created by changing the intensity or polarization of the light. In their experiment, the researchers interfered three laser beams to form a graphene-like honeycomb lattice.

Although spread out over all lattice sites the quantum degenerate atoms carry a well-defined momentum in the light crystal. The researchers then rapidly accelerated the atoms to a different momentum and measured the magnitude of the excitations they created.

When the acceleration is fast enough, such that the system is described by the Wilson line, this straightforward measurement reveals how the electronic wave function at the higher momentum differs from the wave function at the initial momentum.

Repeating the same experiment at many different crystal momenta would yield a complete map of how the wave functions change over the entire momentum space of the artificial solid.

The researchers not only confirmed that it was possible to move the atoms in such a fashion that the dynamics were described by two-band Wilson lines, the measurements at different momenta also revealed both the local, geometric properties and the global, topological structure of the bands.

While the lowest two bands of the honeycomb lattice are known not to be topological, the results demonstrate that Wilson lines can indeed be experimentally used to probe and uncover the band geometry and topology in these novel synthetic settings.

 

 

Spinning electrons yield positrons for research

 
‎Friday, ‎June ‎10, ‎2016, ‏‎3:06:09 AMGo to full article
Newport News, VA (SPX) Jun 06, 2016 - Researchers use accelerators to coax the electron into performing a wide range of tricks to enable medical tests and treatments, improve product manufacturing, and power breakthrough scientific research. Now, they're learning how to coax the same tricks out of the electron's antimatter twin - the positron - to open up a whole new vista of research and applications.

Using the Continuous Electron Beam Accelerator Facility (CEBAF) at the Department of Energy's Jefferson Lab, a team of researchers has, for the first time, demonstrated a new technique for producing polarized positrons. The method could enable new research in advanced materials and offers a new avenue for producing polarized positron beams for a proposed International Linear Collider and an envisioned Electron-Ion Collider.

Jefferson Lab Injector Scientist Joe Grames says the idea for the method grew out of the many advances that have been made in understanding and controlling the electron beams used for research in CEBAF.

"We have a lot of experience here at Jefferson Lab in operating a world-leading electron accelerator," Grames said. "We are constantly improving the electron beam for the experiments, pushing the limits of what we can get the electrons to do."

The CEBAF accelerator gathers up free electrons, sets the electrons to spinning like tops, packs them full of additional energy ("accelerating" the particles to up to 12 billion electron-volts), and directs them along a tightly controlled path into experimental targets. Grames and his colleagues would like to take that finesse a step further and transform CEBAF's well-controlled polarized electron beams into well-controlled beams of polarized positrons to offer researchers at Jefferson Lab an additional probe of nuclear matter. They named the endeavor the Polarized Electrons for Polarized Positrons experiment, or PEPPo.

Positrons are the anti-particles of electrons. Where the electron has a negative charge, the positron has a positive one. Producing positrons that are spinning in the same direction, like the electrons in CEBAF, is very challenging. Before PEPPo, researchers had successfully managed to coax polarized positrons into existence using very high-energy electron beams and sophisticated technologies. The PEPPo method, however, puts a new twist on things.

"From the beginning, our aim was to show that we could use the polarized electron beam we produce every day at CEBAF to create the positrons. But we wanted to do that using a low-energy and small-footprint electron beam, so that a university or company may also benefit from our proof of principle," Grames explained.

The PEPPo system was placed inside the CEBAF accelerator's injector, which is the part of the accelerator that generates electrons. The system consists mainly of small magnets for managing the particle beams, targets for transforming them, and detectors for measuring the particles.

In it, a new beam of electrons from CEBAF is directed into a slice of tungsten. The electrons rapidly decelerate as they pass through the tungsten atoms, giving off gamma rays. These gamma rays then interact with other atoms in the tungsten target to produce lower-energy pairs of positrons and electrons. Throughout the process, the polarization of the original electron beam is passed along. The researchers use a magnet to siphon the positrons away from the other particles and direct them into a detector system that measures their energy and polarization.

"We showed that there's a very efficient transfer of polarization from electrons to the positrons," said Grames.

Further, the researchers found that it is also possible to dial up the degree of polarization that they are interested in by selecting positrons of the right energy. While the more abundant lower-energy positrons are less polarized, the positrons with highest-energy retain nearly all of the polarization of the original electron beam. In PEPPo, the electron beam was 85 percent polarized and accelerated to 8 million electron-volts (MeV).

"Nuclear physicists typically want the highest polarization possible for their experiments," he explained. "Positrons collected at half the original electron energy were about 50 percent polarized, which is still quite high. But, as we approached the maximum energy, we measured 82 percent, showing that a very large portion of the original electron polarization is transferred."

The PEPPo experiment ran for four weeks in the spring of 2012. The result has just been published in Physical Review Letters, and it is featured as an Editors' Suggestion.

Grames and his colleagues say now that they have their proof of principle, they want to design a source that is capable of producing a beam of polarized positrons for research.

"With this result in hand, we are now asking ourselves what's the best way to collect these positrons into a beam that may be used by nuclear physicists in experiments at Jefferson Lab and that may be useful for other facilities. That's the next step."

Research paper: "Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies"

 

 

NASA's Hubble finds universe is expanding faster than expected

 
‎Monday, ‎June ‎6, ‎2016, ‏‎10:36:59 AMGo to full article
Greenbelt MD (SPX) Jun 06, 2016 - Astronomers using NASA's Hubble Space Telescope have discovered that the universe is expanding 5 percent to 9 percent faster than expected. "This surprising finding may be an important clue to understanding those mysterious parts of the universe that make up 95 percent of everything and don't emit light, such as dark energy, dark matter, and dark radiation," said study leader and Nobel Laureate Adam Riess of the Space Telescope Science Institute and The Johns Hopkins University, both in Baltimore, Maryland.

Riess' team made the discovery by refining the universe's current expansion rate to unprecedented accuracy, reducing the uncertainty to only 2.4 percent. The team made the refinements by developing innovative techniques that improved the precision of distance measurements to faraway galaxies.

The team looked for galaxies containing both Cepheid stars and Type Ia supernovae. Cepheid stars pulsate at rates that correspond to their true brightness, which can be compared with their apparent brightness as seen from Earth to accurately determine their distance. Type Ia supernovae, another commonly used cosmic yardstick, are exploding stars that flare with the same brightness and are brilliant enough to be seen from relatively longer distances.

By measuring about 2,400 Cepheid stars in 19 galaxies and comparing the observed brightness of both types of stars, the accurately measured their true brightness and calculated distances to roughly 300 Type Ia supernovae in far-flung galaxies.

The team compared those distances with the expansion of space as measured by the stretching of light from receding galaxies. They used these two values to calculate how fast the universe expands with time, or the Hubble constant.

The improved Hubble constant value is 73.2 kilometers per second per megaparsec. (A megaparsec equals 3.26 million light-years.) The new value means the distance between cosmic objects will double in another 9.8 billion years.

This refined calibration presents a puzzle, however, because it does not quite match the expansion rate predicted for the universe from its trajectory seen shortly after the Big Bang. Measurements of the afterglow from the Big Bang by NASA's Wilkinson Microwave Anisotropy Probe (WMAP) and the European Space Agency's Planck satellite mission yield predictions which are 5 percent and 9 percent smaller for the Hubble constant, respectively.

"If we know the initial amounts of stuff in the universe, such as dark energy and dark matter, and we have the physics correct, then you can go from a measurement at the time shortly after the big bang and use that understanding to predict how fast the universe should be expanding today," said Riess. "However, if this discrepancy holds up, it appears we may not have the right understanding, and it changes how big the Hubble constant should be today."

Comparing the universe's expansion rate with WMAP, Planck, and Hubble is like building a bridge, Riess explained. On the distant shore are the cosmic microwave background observations of the early universe. On the nearby shore are the measurements made by Riess' team using Hubble.

"You start at two ends, and you expect to meet in the middle if all of your drawings are right and your measurements are right," Riess said. "But now the ends are not quite meeting in the middle and we want to know why."

There are a few possible explanations for the universe's excessive speed. One possibility is that dark energy, already known to be accelerating the universe, may be shoving galaxies away from each other with even greater - or growing - strength.

Another idea is that the cosmos contained a new subatomic particle in its early history that traveled close to the speed of light. Such speedy particles are collectively referred to as "dark radiation" and include previously known particles like neutrinos. More energy from additional dark radiation could be throwing off the best efforts to predict today's expansion rate from its post-big bang trajectory.

The boost in acceleration could also mean that dark matter possesses some weird, unexpected characteristics. Dark matter is the backbone of the universe upon which galaxies built themselves up into the large-scale structures seen today.

And finally, the speedier universe may be telling astronomers that Einstein's theory of gravity is incomplete.

"We know so little about the dark parts of the universe, it's important to measure how they push and pull on space over cosmic history," said Lucas Macri of Texas A and M University in College Station, a key collaborator on the study.

The Hubble observations were made with Hubble's sharp-eyed Wide Field Camera 3 (WFC3), and were conducted by the Supernova H0 for the Equation of State (SH0ES) team, which works to refine the accuracy of the Hubble constant to a precision that allows for a better understanding of the universe's behavior.

The SH0ES Team is still using Hubble to reduce the uncertainty in the Hubble constant even more, with a goal to reach an accuracy of 1 percent. Current telescopes such as the European Space Agency's Gaia satellite, and future telescopes such as the James Webb Space Telescope (JWST), an infrared observatory, and the Wide Field Infrared Space Telescope (WFIRST), also could help astronomers make better measurements of the expansion rate.

Before Hubble was launched in 1990, the estimates of the Hubble constant varied by a factor of two. In the late 1990s the Hubble Space Telescope Key Project on the Extragalactic Distance Scale refined the value of the Hubble constant to within an error of only 10 percent, accomplishing one of the telescope's key goals. The SH0ES team has reduced the uncertainty in the Hubble constant value by 76 percent since beginning its quest in 2005.

The results will appear in an upcoming issue of The Astrophysical Journal.

 

 

Scientists experimentally confirm electron model in complex molecules

 
‎Monday, ‎June ‎6, ‎2016, ‏‎10:36:59 AMGo to full article
Moscow, Russia (SPX) Jun 03, 2016 - Researchers from the Institute of Molecular Science and Technologies (ISTM-CNR, Italy), Moscow Institute of Physics and Technology (MIPT), and the University of Milan have experimentally confirmed a model to detect electron delocalization in molecules and crystals.

The chemists, whose paper was published in Acta Crystallographica, have also illustrated examples on how the same approach have been used to obtain precious insights into the chemical bonding of a wide variety of systems, from metallorganic compounds to systems of biological relevance.

As electrons are quantum objects, they cannot be clearly identified (or, to use the scientific term, localized) in a particular place. This means that the behaviour of electrons cannot be described using equations that work with regular, non-quantum objects: instead of an electron as a ball within a molecule, scientists have to examine a blurred cloud.

Developing a mathematical model to determine the distribution of electrons relatively quickly and accurately is one of the most significant challenges of modern science.

"The main novelty introduced by our study is the possibility of detecting electron delocalization directly from experimental data. Electron delocalization, which is a cornerstone paradigm of chemistry (fundamental, for example, for understanding aromaticity), could so far be estimated only through approaches relying on quantities not obtainable from experimental measurements, e.g. the so-called 'delocalization index'. Our results may therefore pave the way for looking at this important phenomenon in a new fashion" - writes Gabriele Saleh, one of the co-authors of the study.

The mathematical model proposed in 1998 by the Canadian expert in quantum chemistry Richard Bader and the Italian researcher Carlo Gatti sees electron distribution in a crystal as the sum of contributions of so-called Source Functions.

From this point of view, a molecule (or crystal) is seen as a set of individual elements, each of which contributes to the final distribution. This approach, as shown by subsequent studies, provides an insightful view of hydrogen bonds, metal-ligand bonds, and other types of chemical interactions.

From theory to practice
In 2016, Carlo Gatti, Gabriele Saleh (researcher at MIPT's Laboratory of Computer Design of Materials) and Leonardo Lo Presti of the University of Milan demonstrated yet another use of the Bader-Gatti approach for studying chemical bonding directly from experimental results.

For the analysis, they used data obtained previously by European and Australian scientists in X-ray and neutron diffraction experiments on samples of benzene, naphthalene and other compounds. In these experiments X-ray beam is directed onto a sample and once it passes through it, it is diffracted.

By looking at how this diffraction occurs and in which direction particles are deflected, scientists are able to make conclusions about the distribution of electrons within a crystal under study - this distribution is described using the concept of electron density.

In their paper, the researchers note that the results - presented in the form of X-ray diffraction derived electron density of molecules - allow the Bader-Gatti model to be used to describe the subtle effects associated with electron delocalization in organic molecular crystals. The experimental data is fully consistent with the results of ab initio numerical modelling - based on the fundamental laws of quantum mechanics.

In some cases, electrons within molecules or crystals cannot be related to a particular bond or atom. They belong to the structure as a whole and are called "delocalized electrons".

These particles play a key role in the formation of certain molecules and their behaviour can only be described using the principles of quantum chemistry - e.g. electrons forming a ring in a molecule of benzene or its derivatives.

The modelling of molecules and crystals is important both from a theoretical and from a practical point of view. Detailed knowledge of how electrons are distributed within a subject under study will enable scientists to understand the properties of the substance as a whole; and this information is also needed when calculating interactions between molecules themselves.

Data on electron density is of paramount importance to help discover new drugs (to identify exactly which molecules can reach a target protein and react with it), and to calculate the characteristics of materials formed by various molecules.

Among the prospects for further research, there are not only studies about the density of electrons, but also their spins - characteristics which determine the magnetic properties of a material.

The use of methods of quantum mechanics is increasingly blurring the boundary between scientific disciplines, and issues related to the chemistry of compounds are gradually moving into the field of physics and computational mathematics.

 

 

40-year math mystery and 4 generations of figuring

 
‎Monday, ‎June ‎6, ‎2016, ‏‎10:36:59 AMGo to full article
Atlanta GA (SPX) May 30, 2016 - This may sound like a familiar kind of riddle: How many brilliant mathematicians does it take to come up with and prove the Kelmans-Seymour Conjecture? But the answer is no joke, because arriving at it took mental toil that spanned four decades until this year, when mathematicians at the Georgia Institute of Technology finally announced a proof of that conjecture in Graph Theory.

Their research was funded by the National Science Foundation. Graph Theory is a field of mathematics that's instrumental in complex tangles. It helps you make more connecting flights, helps get your GPS unstuck in traffic, and helps manage your Facebook posts. Back to the question. How many? Six (at least).

One made the conjecture. One tried for years to prove it and failed but passed on his insights. One advanced the mathematical basis for 10 more years. One helped that person solve part of the proof. And two more finally helped him complete the rest of the proof.

Elapsed time: 39 years. So, what is the Kelmans-Seymour Conjecture, anyway? Its name comes from Paul Seymour from Princeton University, who came up with the notion in 1977. Then another mathematician named Alexander Kelmans, arrived at the same conjecture in 1979.

And though the Georgia Tech proof fills some 120 pages of math reasoning, the conjecture itself is only one short sentence:

If a graph G is 5-connected and non-planar, then G has a TK5.

The devil called 'TK5'
You could call a TK5 the devil in the details. TK5s are larger relatives of K5, a very simple formation that looks like a 5-point star fenced in by a pentagon. It resembles an occult or Anarchy symbol, and that's fitting. A TK5 in a "graph" is guaranteed to thwart any nice, neat "planar" status.

Graph Theory. Planar. Non-planar. TK5. Let's go to the real world to understand them better.

"Graph Theory is used, for example, in designing microprocessors and the logic behind computer programs," said Georgia Tech mathematician Xingxing Yu, who has shepherded the Kelmans-Seymour Conjecture's proof to completion. "It's helpful in detailed networks to get quick solutions that are reasonable and require low computational complexity."

To picture a graph, draw some cities as points on a whiteboard and lines representing interstate highways connecting them.

But the resulting drawings are not geometrical figures like squares and trapezoids. Instead, the lines, called "edges," are like wires connecting points called "vertices." For a planar graph, there is always some way to draw it so that the lines from point to point do not cross.

In the real world, a microprocessor is sending electrons from point to point down myriad conductive paths. Get them crossed, and the processor shorts out.

In such intricate scenarios, optimizing connections is key. Graphs and graph algorithms play a role in modeling them. "You want to get as close to planar as you can in these situations," Yu said.

In Graph Theory, wherever K5 or its sprawling relatives TK5s show up, you can forget planar. That's why it's important to know where one may be hiding in a very large graph.

The human connections
The human connections that led to the proof of the Kelmans-Seymour Conjecture are equally interesting, if less complicated.

Seymour had a collaborator, Robin Thomas, a Regent's Professor at Georgia Tech who heads a program that includes a concentration on Graph Theory. His team has a track record of cracking decades-old math problems. One was even more than a century old.

"I tried moderately hard to prove the Kelmans-Seymour conjecture in the 1990s, but failed," Thomas said. "Yu is a rare mathematician, and this shows it. I'm delighted that he pushed the proof to completion."

Yu, once Thomas' postdoc and now a professor at the School of Mathematics, picked up on the conjecture many years later.

"Around 2000, I was working on related concepts and around 2007, I became convinced that I was ready to work on that conjecture," Yu said. He planned to involve graduate students but waited a year. "I needed to have a clearer plan of how to proceed. Otherwise, it would have been too risky," Yu said.

Then he brought in graduate student Jie Ma in 2008, and together they proved the conjecture part of the way.

Two years later, Yu brought graduate students Yan Wang and Dawei He into the picture. "Wang worked very hard and efficiently full time on the problem," Yu said. The team delivered the rest of the proof quicker than anticipated and currently have two submitted papers and two more in the works.

In addition to the six mathematicians who made and proved the conjecture, others tried but didn't complete the proof but left behind useful cues.

Nearly four decades after Seymour had his idea, the fight for its proof is still not over. Other researchers are now called to tear at it for about two years like an invading mob. Not until they've thoroughly failed to destroy it, will the proof officially stand.

Seymour's first reaction to news of the proof reflected that reality. "Congratulations! (If it's true...)," he wrote.

Graduate student Wang is not terribly worried. "We spent lots and lots of our time trying to wreck it ourselves and couldn't, so I hope things will be fine," he said.

If so, the conjecture will get a new name: Kelmans-Seymour Conjecture Proved by He, Wang and Yu.

And it will trigger a mathematical chain reaction, automatically confirming a past conjecture, Dirac's Conjecture Proved by Mader, and also putting within reach proof of another conjecture, Hajos' Conjecture.

For Princeton mathematician Seymour, it's nice to see an intuition he held so strongly is now likely to enter into the realm of proven mathematics.

"Sometimes you conjecture some pretty thing, and it's just wrong, and the truth is just a mess," he wrote in an email message. "But sometimes, the pretty thing is also the truth; that that does happen sometimes is basically what keeps math going I suppose. There's a profound thought."

See the video here

 

 

Supermassive black hole wind can stop new stars from forming

 
‎Monday, ‎June ‎6, ‎2016, ‏‎10:36:59 AMGo to full article
San Francisco CA (SPX) May 30, 2016 - Scientists have uncovered a new class of galaxies with supermassive black hole winds that are energetic enough to suppress future star formation. Devoid of fresh young stars, red and dead galaxies make up a large fraction of galaxies in our nearby universe, but a mystery that has plagued astronomers for years has been how these systems remain inactive despite having all of the ingredients needed to form stars.

Now, an international team of researchers have used optical imaging spectroscopy from the Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at Apache Point Observatory (SDSS-IV MaNGA) to catch a supermassive black hole in the act of heating gas within its host galaxy, leading to the prevention of star formation.

"Stars are created by the cooling and collapse of gas, but in these galaxies there are no new stars despite an abundance of gas. It's like we have rain clouds hanging over a desert, but none of the rainwater is reaching the ground." said Edmond Cheung, Project Researcher at the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), and lead author of a new study published in Nature on May 26.

The team studied a galaxy nicknamed Akira, the prototypical example of the newly discovered class of galaxies called "red geysers" - red referring to the color of galaxies that lack young blue stars, and geyser referring to the episodic wind outbursts from the supermassive black hole.

Akira showed intriguing and complex patterns of warm gas, implying the presence of an outflowing wind from the supermassive black hole in its center. The researchers say the fuel for Akira's supermassive black hole likely came from the interaction with a smaller galaxy, nicknamed Tetsuo. The outflowing wind had enough energy to heat the surrounding gas through shocks and turbulence and could ultimately prevent any future star formation.

These are some of the early results from the Kavli IPMU-led SDSS-IV MaNGA survey, which began observations in 2014. The technology involved in the new survey allows scientists to map galaxies ten to one hundred times faster than before, making it possible to build large enough samples required to catch galaxies undergoing rapidly changing phenomena.

"The critical power of MaNGA is the ability to observe thousands of galaxies in three dimensions, by mapping not only how they appear on the sky, but also how their stars and gas move inside them," said Kevin Bundy, MaNGA's Principal Investigator and Kavli IPMU Project Assistant Professor.

The team will continue to analyze the survey's data and plans a number of follow-up studies to further reveal the role of red geysers on the evolution of galaxies.

Research paper: "Suppressing star formation in quiescent galaxies with supermassive black hole winds"

 

 

New study implies existence of fifth force of nature

 
‎Monday, ‎June ‎6, ‎2016, ‏‎10:36:59 AMGo to full article
Irvine, Calif. (UPI) May 26, 2016 - A team of Hungarian physicists published a paper last year hinting at the possibility of a fifth force of nature. It escaped publicity, but a recent analysis of the data by researchers at the University of California, Irvine has brought the paper back into the limelight.

The Standard Model of particle physics -- a model that helps scientists explain all the physics we can observe -- features four main forces: gravity, electromagnetism and the strong and weak nuclear forces. Scientists have long searched for -- and offered circumspect proof of -- a fifth force. The reason scientists continue to search for alternate forces is that the Standard Model fails to explain the existence and behavior of dark matter.

The Hungarian team, led by physicist Attila Krasznahorkay, was looking for dark matter by firing protons at a thin slice of lithium-7. Their experiments produced a different sort of anomaly.

The collision produced beryllium-8 nuclei, which emitted pairs of electrons and positrons as they decayed. According to the Standard Model the number of observable pairs should drop as the angle of the trajectory of the diverging electron and positron gets larger.

Instead, the number of pairs jumped at 140 degrees -- creating a slight hiccup or bump before the pairs again dropped off as the angle continued to increase.

The Hungarian team cited the bump as evidence of a new particle with a unique force.

"We are very confident about our experimental results," Krasznahorkay told Nature.

Researchers at UC-Irvine say the analysis of Krasznahorkay's team is congruous with previous experiments and theoretical results. In their own paper, the UC-Irvine scientists suggest the bump is evidence of a protophobic X boson, which may indeed be carrying a fifth force acting across just the width of the atomic nucleus.

The recent discovery was unexpected, and many particle physicists remain understandably skeptical. The research has yet to be replicated, and finding the same particles again will be quite difficult, but the science world is now paying attention.

"Perhaps we are seeing our first glimpse into physics beyond the visible Universe," said skeptic Jesse Thaler, a theoretical physicist at MIT.

 

 

Doubling down on Schrodinger's cat

 
‎Monday, ‎June ‎6, ‎2016, ‏‎10:36:59 AMGo to full article
New Haven CT (SPX) May 30, 2016 - Yale physicists have given Schrodinger's famous cat a second box to play in, and the result may help further the quest for reliable quantum computing.

Schrodinger's cat is a well-known paradox that applies the concept of superposition in quantum physics to objects encountered in everyday life. The idea is that a cat is placed in a sealed box with a radioactive source and a poison that will be triggered if an atom of the radioactive substance decays. Quantum physics suggests that the cat is both alive and dead (a superposition of states), until someone opens the box and, in doing so, changes the quantum state.

This hypothetical experiment, envisioned by one of the founding fathers of quantum mechanics in 1935, has found vivid analogies in laboratories in recent years. Scientists can now place a wave-packet of light composed of hundreds of particles simultaneously in two distinctly different states. Each state corresponds to an ordinary (classical) form of light abundant in nature.

A team of Yale scientists created a more exotic type of Schrodinger's cat-like state that has been proposed for experiments for more than 20 years. This cat lives or dies in two boxes at once, which is a marriage of the idea of Schrodinger's cat and another central concept of quantum physics: entanglement. Entanglement allows a local observation to change the state of a distant object instantaneously. Einstein once called it "spooky action at a distance," and in this case it allows a cat state to be distributed in different spatial modes.

The Yale team built a device consisting of two, 3D microwave cavities and an additional monitoring port - all connected by a superconducting, artificial atom. The "cat" is made of confined microwave light in both cavities.

"This cat is big and smart. It doesn't stay in one box because the quantum state is shared between the two cavities and cannot be described separately," said Chen Wang, a postdoctoral associate at Yale and first author of a study in the journal Science, describing the research. "One can also take an alternative view, where we have two small and simple Schrodinger's cats, one in each box, that are entangled."

The research also has potential applications in quantum computation. A quantum computer would be able to solve certain problems much faster than classical computers by exploiting superposition and entanglement. Yet one of the main problems in developing a reliable quantum computer is how to correct for errors without disturbing the information.

"It turns out 'cat' states are a very effective approach to storing quantum information redundantly, for implementation of quantum error correction. Generating a cat in two boxes is the first step towards logical operation between two quantum bits in an error-correctible manner," said co-author Robert Schoelkopf, Sterling Professor of Applied Physics and Physics, and director of the Yale Quantum Institute.

Schoelkopf and his frequent collaborators, Michel Devoret and Steve Girvin, have pioneered the field of circuit quantum electrodynamics (cQED), providing one of the most widely used frameworks for quantum computation research. Devoret, Yale's F.W. Beinecke Professor of Physics, and Girvin, Yale's Eugene Higgins Professor of Physics and Applied Physics, are co-authors of the paper.

The research builds upon more than a decade of development in cQED architecture. The Yale team designed a variety of new features, including cylindrical 3D cavities with record quantum information storage time of more than 1 millisecond in superconducting circuits, and a measurement system that monitors certain aspects of a quantum state in a precise, non-destructive way. "We have combined quite a lot of recent technologies here," Wang said.

Additional co-authors from the Yale Departments of Applied Physics and Physics include assistant professor Liang Jiang; senior research scientist Luigi Frunzio; postdoctoral associates Reinier Heeres and Nissim Ofek; graduate students Yvonne Gao, Philip Reinhold, Kevin Chou, Christopher Axline, Matthew Reagor, Jacob Blumoff, and Katrina Sliwa; and former Yale researcher Mazyar Mirrahimi.

 

 

Could optical clocks redefine the length of a second

 
‎Monday, ‎June ‎6, ‎2016, ‏‎10:36:59 AMGo to full article
Washington DC (SPX) May 30, 2016 - GPS-based navigation, communication systems, electrical power grids and financial networks all rely on the precise time kept by a network of around 500 atomic clocks located around the world. In The Optical Society's journal for high impact research, Optica, researchers present a way to use optical clocks for more accurate timekeeping than is possible with today's system of traditional atomic clocks. The researchers also measured an optical clock's frequency - analogous to it's "ticking" - with unprecedented precision.

A more accurate global time keeping system would allow financial networks to use more precise time stamps and thus handle even more transactions in shorter amounts of time. It would also allow GPS and other satellite-based navigation systems to provide even more precise location information.

Although optical clocks have been more accurate than microwave clocks for some time, their complexity and resulting long downtimes have made it unpractical to use them for worldwide timekeeping.

"We showed that even with the downtimes of today's optical clocks, they still can improve timekeeping," said Christian Grebing, Physikalisch-Technische Bundesanstalt (PTB), The National Metrology Institute of Germany, who is a member of the research team. "We achieved a better performance compared to the very best microwave fountain clocks which have generally been considered less reliable and thus less suitable for the actual implementation of a practical timescale."

How long is a second?
Clocks work by counting a recurrent event with a known frequency, such as the swinging of a pendulum. For traditional atomic clocks, the recurrent event is the natural oscillation of the cesium atom, which has a frequency in the microwave region of the electromagnetic spectrum. Since 1967, the International System of Units (SI) has defined the second as the time that elapses during 9,192,631,770 cycles of the microwave signal produced by these oscillations.

Atomic clocks are extremely accurate because they are based on natural and universal atom vibrations. However, even the best atomic microwave clocks can still accumulate an error of about 1 nanosecond over a month.

Optical clocks work in a manner somewhat similar to microwave clocks but use atoms or ions that oscillate about 100,000 times higher than microwave frequencies, in the optical, or visible, part of the electromagnetic spectrum. These higher frequencies mean that optical clocks "tick" faster than microwave atomic clocks, and this contributes to their higher accuracy and stability over time. However, optical clocks do experience significant downtimes because of their higher technical complexity.

Making optical clocks practical
To deal with the downtimes that plague today's optical clocks, the researchers combined a commercially available maser with a strontium optical lattice clock at PTB, Germany's national metrology institute.

The maser, which is like a laser except that it operates in the microwave spectral range, can be used as a type of reliable pendulum with limited accuracy to bridge the downtime of the optical clock. The researchers spanned the large spectral gap between the optical clock's optical frequency and the maser's microwave frequency with an optical frequency comb, which effectively divides the slower microwave-based "ticks" to match the faster "ticks" of the optical clock.

"We compared the continuously running maser with our optical clock and corrected the maser frequency as long as we had data available from the optical clock," said Grebing. "During the optical clock's downtimes, the maser runs on its own stably."

The researchers operated the maser and optical clock for 25 days, during which the optical clock ran about 50 percent of the time. Even with optical clock downtimes ranging from minutes to two days, the researchers calculated a time error of less than 0.20 nanoseconds over the 25 days.

Redefining the second
To redefine a second based on optical clocks not only requires making sure that optical clocks are practical, but it also requires comparing their frequency, or "ticking," to the old definition of the SI second.

To do this, the researchers compared their strontium optical clock with two microwave clocks at PTB. Incorporating the maser strongly improved the statistical uncertainty of these measurements, allowing the researchers to measure the absolute frequency of the optical clock's strontium oscillations with the lowest uncertainty ever achieved. The obtained relative uncertainty of about 2.5+ 10-16 corresponds to losing only 100 seconds over the age of the universe - about 14 billion years.

"Our study is a milestone in terms of practical implementation of optical clocks," said Grebing. "The message is that we could today implement these optical clocks into the time-keeping infrastructure that we have now, and we would gain."

Although optical clocks keep time about one hundred times better than atomic clocks, Grebing said that he thinks that a true redefinition of a second might still be a decade away. It makes sense to hold off on redefining the SI second until it is clear which of the several available types of optical clock is the best for global timekeeping. Also, with the very fast pace at which optical clock technology is improving, the accuracy limit of these clocks is not yet fully known.

"We want to improve the timekeeping infrastructure all over the world by building better and better clocks and integrating them into the time-keeping infrastructure," said Grebing. "What we demonstrated is a first step towards a global improvement of timekeeping."

Research paper: C. Grebing, A. Al-Masoudi, S. Dorscher, S. Hafner, V. Gerginov, S. Weyers, B. Lipphardt, F. Riehle, U. Sterr, C. Lisdat, "Realization of a timescale with an accurate optical lattice clock," Optica, 3, 6, 563(2016). DOI: doi.org/10.1364/optica.3.000563.

 

 

How Giant Black Holes Formed So Quickly

 
‎Sunday, ‎May ‎29, ‎2016, ‏‎7:29:09 AMGo to full article
Pasadena CA (JPL) May 26, 2016 - Using data from NASA's Great Observatories, astronomers have found the best evidence yet for cosmic seeds in the early universe that should grow into supermassive black holes. Researchers combined data from NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope to identify these possible black hole seeds. They discuss their findings in a paper that will appear in an upcoming issue of the Monthly Notices of the Royal Astronomical Society.

"Our discovery, if confirmed, explains how these monster black holes were born," said Fabio Pacucci of Scuola Normale Superiore (SNS) in Pisa, Italy, who led the study. "We found evidence that supermassive black hole seeds can form directly from the collapse of a giant gas cloud, skipping any intermediate steps."

Scientists believe a supermassive black hole lies in the center of nearly all large galaxies, including our own Milky Way. They have found that some of these supermassive black holes, which contain millions or even billions of times the mass of the sun, formed less than a billion years after the start of the universe in the Big Bang.

One theory suggests black hole seeds were built up by pulling in gas from their surroundings and by mergers of smaller black holes, a process that should take much longer than found for these quickly forming black holes.

These new findings suggest instead that some of the first black holes formed directly when a cloud of gas collapsed, bypassing any other intermediate phases, such as the formation and subsequent destruction of a massive star.

"There is a lot of controversy over which path these black holes take," said co-author Andrea Ferrara, also of SNS. "Our work suggests we are narrowing in on an answer, where the black holes start big and grow at the normal rate, rather than starting small and growing at a very fast rate."

The researchers used computer models of black hole seeds combined with a new method to select candidates for these objects from long-exposure images from Chandra, Hubble and Spitzer.

The team found two strong candidates for black hole seeds. Both of these matched the theoretical profile in the infrared data, including being very red objects, and they also emit X-rays detected with Chandra. Estimates of their distance suggest they may have been formed when the universe was less than a billion years old

"Black hole seeds are extremely hard to find and confirming their detection is very difficult," said Andrea Grazian, a co-author from the National Institute for Astrophysics in Italy. "However, we think our research has uncovered the two best candidates to date."

The team plans to obtain further observations in X-rays and infrared to check whether these objects have more of the properties expected for black hole seeds. Upcoming observatories, such as NASA's James Webb Space Telescope and the European Extremely Large Telescope, will aid in future studies by detecting the light from more distant and smaller black holes. Scientists currently are building the theoretical framework needed to interpret the upcoming data, with the aim of finding the first black holes in the universe.

"As scientists, we cannot say at this point that our model is 'the one'," said Pacucci. "What we really believe is that our model is able to reproduce the observations without requiring unreasonable assumptions."

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program while the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington.

NASA's Jet Propulsion Laboratory in Pasadena, California, manages the Spitzer Space Telescope mission, whose science operations are conducted at the Spitzer Science Center. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado.

Monthly Notices of the Royal Astronomical Society

 

 

A look beyond the horizon of events

 
‎Sunday, ‎May ‎29, ‎2016, ‏‎7:29:09 AMGo to full article
Rome, Italy (SPX) May 27, 2016 - In principle, nothing that enters a black hole can leave the black hole. This has considerably complicated the study of these mysterious bodies on which generations of physicists have debated ever since 1916, the year their existence was hypothesized as a direct consequence of Einstein's Theory of Relativity. There is, however, some consensus in the scientific community on the fact that black holes possess an entropy, because their existence would otherwise violate the second law of thermodynamics.

In particular, Jacob Bekenstein and Stephen Hawking have suggested that the entropy - which we can basically consider a measure of the inner disorder of a physical system - of a black hole is proportional to its area and not to its volume, as would be more intuitive.

This assumption also gives rise to the "holography" hypothesis of black holes, which (very roughly) suggests that what appears to be three-dimensional might in fact be an image projected onto a distant two-dimensional cosmic horizon just like a hologram which, despite being a two-dimensional image, appears to us as three-dimensional.

As we cannot see beyond the event horizon (the outer boundary of the back hole), the internal microstates that define its entropy are inaccessible: so how is it possible to calculate this measure? The theoretical approach adopted by Hawking and Bekenstein is semiclassical (a sort of hybrid between classical physics and quantum mechanics) and introduces the possibility (or necessity) of adopting a quantum gravity approach in these studies, in order to obtain a more fundamental comprehension of the physics of black holes.

Planck's length is the (tiny) dimension at which space-time stops being continuous as we see it, and takes on a discrete graininess made up of quanta, the "atoms" of space-time. The Universe at this dimension is described by quantum mechanics.

Quantum gravity is the field of enquiry that investigates gravity in the framework of quantum mechanics: this force is a phenomenon that has been very well described within classical physics, but it is unclear how it behaves at the Planck scale.

Daniele Pranzetti and colleagues, in a new study published in Physical Review Letters, present an important result obtained by applying a second quantization formulation of Loop Quantum Gravity (LQG) formalism. LQG is a theoretical approach within the problem of quantum gravity, and Group Field Theory is the "language" through which the theory is applied in this work.

"The idea at the basis of our study is that homogenous classical geometries emerge from a condensate of quanta of space introduced in LQG in order to describe quantum geometries" explains Pranzetti. "This way, we obtained a description of black hole quantum states, suitable to describe also 'continuum' physics, that is, the physics of space-time as we know it".

Condensates, quantum fluids and the universe as a hologram
A "condensate" is a collection of 'atoms' - in this case space quanta - all of which share the same properties so that, even though there are huge numbers of them, we can nonetheless study their collective behavior simply, by referring to the microscopic properties of the individual particle.

So now the analogy with classical thermodynamics seems clearer: just as fluids at our scale appear as continuous materials despite their consisting of a huge number of atoms, similarly, in quantum gravity, the fundamental constituent atoms of space form a sort of fluid, that is, continuous space-time.

A continuous and homogenous geometry (like that of a spherically symmetric black hole) can, as Pranzetti and colleagues suggest, be described as a condensate, which facilitates the underlying mathematical calculations, keeping in account an a priori infinite number of degrees of freedom .

"We were therefore able to use a more complete and richer model compared with what done in the past in LQG, and obtain a far more realistic and robust result", continues Pranzetti. "This allowed us to resolve several ambiguities afflicting previous calculations due to the comparison of these simplified LQG models with the results of semiclassical analysis, as carried out by Hawking and Bekenstein".

Another important aspect of Pranzetti and colleagues' study is that it proposes a concrete mechanism in support to the holographic hypothesis, whereby the three-dimensionality of black holes could be merely apparent: all their information could be contained on a two-dimensional surface, without having to investigate the structure of the inside (hence the link between entropy and surface area rather than volume).

The other two authors of the study are Daniele Oriti, of the Max Planck Institute for Gravitational Physics in Potsdam, Germany, and Lorenzo Sindoni, former SISSA research fellow, now also at the Max Planck Institute in Potsdam.

 

 

Gigantic ultrafast spin currents

 
‎Sunday, ‎May ‎29, ‎2016, ‏‎7:29:09 AMGo to full article
Vienna, Austria (SPX) May 26, 2016 - In our computer chips, information is transported in form of electrical charge. Electrons or other charge carriers have to be moved from one place to another. For years scientists have been working on elements that take advantage of the electrons angular momentum (their spin) rather than their electrical charge. This new approach, called "spintronics" has major advantages compared to common electronics. It can operate with much less energy.

However, it is difficult to create such a spin current, which is required in spintronics. In the journal Physical Review Letters, physicists from TU Wien (Vienna) have now proposed a new method to produce gigantic spin currents in a very small period of time. The secret is using ultra short laser pulses.

Magnets and Semiconductors
For every electron, two different spin-states are possible; they are called "spin up" and "spin down". The electron spin is responsible for ferromagnetism: when many electron spins in a metal are aligned, they can collectively create a magnetic field. Therefore, using ferromagnets to create spin flux seems like a straightforward idea.

"There have been attempts to send an electric current through a combination of magnets and semiconductors", says Professor Karsten Held (TU Wien). "The idea is to create a flux of electrons with uniform spin, which can then be used for spintronic circuits. But the efficiency of this method is very limited."

Karsten Held and Marco Battiato found another way. In computer simulations, they analysed the behaviour of electrons in a thin layer of nickel when it is attached to silicon and hit with ultra short laser pulses. "Such a laser pulse has an overwhelming effect on the electrons in nickel", says Marco Battiato. They are swept away and accelerated towards the silicon.

An electric field builds up at the interface between nickel and silicon, which stops the current. Electrons still keep on migrating between the nickel layer and silicon, but the motion in both directions cancel each other, there is no net charge transfer.

Spin Up and Spin Down
But even when no electric charge is transported, it is still possible to transport spin. "In the nickel layer, there are both spin-up electrons as well as spin-down electrons", says Karsten Held. "But the metal atoms influence both kinds of electrons in different ways. The spin-up electrons can move rather freely. The spin-down electrons however have a much higher probability of being scattered at the nickel atoms."

When the electrons are scattered, they change their direction and lose energy. Therefore, the majority of the electrons which do make it all the way to the nickel-silicon interface are spin-up electrons. Electrons which move in the opposite direction have equal probabilities of being in the spin-up or spin-down state.

This spin-selective effect leads to a dominance of spin-up electrons in the silicon. This means that a spin current has been injected into the silicon without creating a charge current. "Our calculations show that this spin-polarization is extremely strong - much stronger than we could create with other methods", says Marco Battiato.

"And this spin flux can be created in femtoseconds." Time is of the essence: today's computer processors operate with gigahertz frequencies. Billions of operations per second are possible. Even higher frequencies in the terahertz range can only be reached with extremely fast elements.

So far, the method has only been tested in computer simulations. But Battiato and Held are already working with experimentalists who want to measure this laser-triggered spin flux. "Spintronics has the potential to become a key technology of the next few decades", says Held. "With our spin injection method there is now finally a way to create ultrafast, extremely strong spin currents."

 

 

 

 

 

 

 

 

Beyond Perception - DVD

by Chuck Missler  

 

 

DVD

PRICE R 159.00

 

Media Type: DVD
Published 20-Sep-2010
Published by Koinonia House
KHID#: DVD84
Why do scientists now believe we live in a 10-dimensional universe?

Has physics finally reached the very boundaries of reality?

There seems to be evidence to suggest that our world and everything in it are only ghostly images; projections from a level of reality so beyond our own that the real reality is literally beyond both space and time. The main architect of this astonishing idea is one of the world's most eminent thinkers- physicist David Bohm, a protege of Einstein's. Earlier, he noticed that, in plasmas, particles stopped behaving like individuals and started behaving as if they were part of a larger and inter connected whole. He continued his work in the behavior of oceans of these particles, noting their behaving as if they know what each on the untold trillions of individual particles were doing.

This briefing pack DVD comes with:
-two mp3 audio files
-one notes file in pdf format

This DVD includes notes in PDF format and MP3 files.

Encoding: This DVD will be viewable in other countries WITH the proper DVD player and television set.
Format: Color, Fullscreen
Aspect Ratio: 4:3
Audio Encoding: Dolby Digital 2.0 stereo
Run Time: 2 hour(s)
Number of discs: 1


 
The Beyond Collection 

 

 

      

 

 

 

Price R399.00

 The Collection Includes the 4 DVD'S below

 

 

 

DVD - R159.00

 

 

DVD - R159.00

 

 

DVD - R159.00

 

 

DVD - R159.00

 

If you purchase the 4 discs individually the price will be R636.00

 

 YOU SAVE R 237.00!

Genetics Research Confirms Biblical Timeline

Exciting research from the summer of 2012 described DNA variation in the protein coding regions of the human genome linked to population growth. One of the investigation's conclusions was that the human genome began to rapidly diversify not more than 5,000 years ago.1,2 This observation closely agrees with a biblical timeline of post-flood human diversification. Yet another study, this one published in the journal Nature, accessed even more extensive data and unintentionally confirmed the recent human history described in Genesis.3

Differences in human DNA can be characterized across populations and ethnic groups using a variety of techniques. One of the most informative genetic technologies in this regard is the analysis of rare DNA variation in the protein coding regions of the genome. Variability in these regions is less frequent than the more numerous genetic differences that occur in the non-coding regulatory regions. Researchers can statistically combine this information with demographic data derived from population growth across the world to generate time scales related to human genetic diversification.4

What makes this type of research unique is that evolutionary scientists typically incorporate hypothetical deep time scales taken from the authority of paleontologists or other similar deep-time scenarios to calibrate models of genetic change over time. Demographics-based studies using observed world population dynamics do not rely on this bias and are therefore more accurate and realistic.

In a 2012 Science report, geneticists analyzed DNA sequences of 15,585 protein-coding gene regions in the human genome for 1,351 European Americans and 1,088 African Americans for rare DNA variation.1,2 This new study accessed rare coding variation in 15,336 genes from over 6,500 humans—almost three times the amount of data compared to the first study.3 A separate group of researchers performed the new study.

The Nature results convey a second spectacular confirmation of the amazingly biblical conclusions from the first study. These scientists confirmed that the human genome began to rapidly diversify not more than 5,000 years ago. In addition, they found significant levels of  variation to be associated with degradation of the human genome, not forward evolutionary progress. This fits closely with research performed by Cornell University geneticist John Sanford who demonstrated through biologically realistic population genetic modeling that genomes actually devolve over time in a process called genetic entropy.5

According to the Bible, the pre-flood world population was reduced to Noah's three sons and their wives, creating a genetic bottleneck from which all humans descended. Immediately following the global flood event, we would expect to see a rapid diversification continuing up to the present. According to Scripture, this began not more than 5,000 years ago. We would also expect the human genome to devolve or degrade as it accumulates irreversible genetic errors over time. Now, two secular research papers confirm these biblical predictions.

References

  1. Tomkins, J. 2012. Human DNA Variation Linked to Biblical Event Timeline. Creation Science Update. Posted on icr.org July 23, 2012, accessed December 31, 2012.
  2. Tennessen, J. et al. 2012. Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes. Science. 337 (6090): 64-69.
  3. Fu, W, et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature. Published online before print, July 13, 2012.
  4. Keinan, A and A. Clark. 2012. Recent Explosive Human Population Growth Has Resulted in an Excess of Rare Genetic Variants. Science. 336 (6082): 740-743.
  5. Sanford, J. C. 2008. Genetic Entropy and the Mystery of the Genome, 3rd ed. Waterloo, NY: FMS Publications.

* Dr. Tomkins is a Research Associate and received his Ph.D. in Genetics from Clemson University.

 

Six Days of Creation, Part 1 [Podcast]

 
‎Thursday, ‎July ‎14, ‎2016, ‏‎10:00:00 AMGo to full article

The book of Genesis lays the groundwork for the Christian belief system. It is the foundation of everything that God has undertaken on behalf of humanity. Therefore, we need a correct understanding of Genesis in order to correctly understand our identity, our responsibility, and our future. Should we treat the Genesis account as historical fact? Should we believe in a literal creation? What does Genesis say about what and how God created?

 More...

 

Stunning Amber Bird Wings

 
‎Monday, ‎July ‎11, ‎2016, ‏‎10:00:00 AMGo to full article

Newly described bird wings—not just a single feather or a strange-looking fiber or two—rose to the top of a long list of spectacular amber-trapped fossils. Two tiny hatchlings may have seen dinosaurs just before their wings got trapped in fast-flowing tree resin. At least four waves of the magic evolutionary wand would be needed to shove these unique fossils into deep time.

 More...

 

Convergent Evolution or Design-Based Adaptation?

 
‎Thursday, ‎July ‎7, ‎2016, ‏‎10:00:00 AMGo to full article

Convergent evolution is the idea that the same trait, or set of traits, in completely different organisms were somehow produced through independent evolutionary processes. Now a new study shows how two different types of snakes have adapted to a diversity of environments by expressing the same traits (skin color and skull shape), but the study describes no mechanism for it. The authors simply attribute the highly repeatable process to the black box of convergent evolution.

 More...

 

The Seeing Eye

 
‎Tuesday, ‎July ‎5, ‎2016, ‏‎10:00:00 AMGo to full article

Great photographers pair a select lens to a sophisticated camera and then adjust shutter speed and aperture size to capture the perfect photo. Our eyes perform similar tasks but are precisely engineered better than any camera—and their components are vastly more sophisticated. Could the seeing eye have been made by time and chance?

 More...

 

Videoconference with ISS Commander

 
‎Wednesday, ‎June ‎29, ‎2016, ‏‎10:00:00 AMGo to full article

The Institute for Creation Research had the special privilege of videoconferencing with ISS Commander Col. Jeff Williams. He has occasional video-time with family and friends, and he graciously offered a question and answer session to the Dallas ICR staff while his wife, Anna-Marie, listened in from Houston. His responses give us a unique look into his heart.

 More...

 

Urban Trees Point to Creation

 
‎Monday, ‎June ‎27, ‎2016, ‏‎10:00:00 AMGo to full article

A recent U.S. Forest Service study estimated that the trees planted along California streets provide a billion dollars’ worth of human benefit each year. And that benefit comes cheap. This analysis reveals five tree-related benefits that identify where trees fit in the origins controversy.

 More...

 

Scientific Evidence for Creation [Podcast]

 
‎Thursday, ‎June ‎23, ‎2016, ‏‎10:00:00 AMGo to full article

Science and the Bible agree. ICR zoologist and Research Associate Frank Sherwin tells us how in this 5-part podcast series on the scientific evidence for creation. From submicroscopic machines to the mighty oceans, Frank explores the marvels of design, buried clues from the past, and the myth of human evolution.

 More...

 

Neuron-Packed Bird Brains Point to Creation

 
‎Monday, ‎June ‎20, ‎2016, ‏‎10:00:00 AMGo to full article

The amazing ability of birds to achieve ape-level cognitive traits—and in some cases exceed them like when they emulate human speech—has long confounded the evolutionary paradigm that claims humans evolved from apes. Now the bird intelligence evolutionary quandary has worsened as described in a new research report that shows bird brains contain over twice as many neurons per unit area as ape brains.

 More...

 

Special Cells Help Brain and Gut Communicate

 
‎Thursday, ‎June ‎16, ‎2016, ‏‎10:00:00 AMGo to full article

After investing so much time and effort to understand how all parts of the human body interact, scientists keep turning up new and unforeseen connections—often when they ask the right questions. New and strange developments inspired a team to ask wacky questions about a unique white blood cell called Ly6Chi. And they found some profound answers.

 More...

 

Five Reasons to Believe in Recent Creation [Podcast]

 
‎Monday, ‎June ‎13, ‎2016, ‏‎10:00:00 AMGo to full article

Should we read the Genesis creation account as literal and inspired history, or is it simply a symbolic framework that should be adapted to the most popular scientific theories? Sadly, a growing number of Christian leaders accept evolution as fact and try to harmonize the Bible with the concept of naturalistic development over countless eons. Dr. Henry Morris III offers five fundamental reasons why belief in a recent creation is not only feasible, but vital to a true understanding of God’s Word.

 More...

 

Is Chimp Grief Evidence of Evolution?

 
‎Thursday, ‎June ‎9, ‎2016, ‏‎10:00:00 AMGo to full article

As genetic research moves forward, the similarity between humans and chimpanzees becomes more and more distant—well beyond the bounds of evolutionary probability. But the secular world appears determined to show how chimps can behave similar to humans to bolster the failing evolutionary story. The most recent media buzz centers on several articles in which chimps are shown grieving over their dearly departed comrades.

 More...

 

Seagrass Re-evolution

 
‎Monday, ‎June ‎6, ‎2016, ‏‎10:00:00 AMGo to full article

Biologists recently sequenced the seagrass genome. They claim, "Uniquely, Z. marina has re-evolved new combinations of structural traits related to the cell wall." Re-evolved? There is no scientific reason—no empirical evidence—to say the structural traits somehow "re-evolved." How can these scientists make such a statement?

 More...

 

ICR Discovery Center: Expanding Creation Ministry

 
‎Thursday, ‎June ‎2, ‎2016, ‏‎10:00:00 AMGo to full article

Physicist Dr. Jake Hebert explains how the discovery center will enhance and expand ICR’s impact beyond its current media outlets and publications.

 More...

 

Junk DNA…Trashed Again

 
‎Thursday, ‎May ‎26, ‎2016, ‏‎10:00:00 AMGo to full article

Repetitious "words" in DNA represent more than half of the human genome's three billion nucleotides. Because human reasoning essentially views the repetition of words in spoken languages as errors, these DNA sequences were first written off as meaningless junk. Now it appears nothing could be further from the truth since these repetitive words are linked with pervasive biochemical function.

 More...

 

ICR Discovery Center: Impacting Hearts and Minds

 
‎Monday, ‎May ‎23, ‎2016, ‏‎10:00:00 AMGo to full article

Science Writer Brian Thomas tells how creation evidence changed his beliefs about God and Scripture—and ultimately the course of his life! ICR’s discovery center has the potential to reach so many more with this same life-changing message.

 More...

 

Titanic Remake More like Noah's Ark

 
‎Thursday, ‎May ‎19, ‎2016, ‏‎10:00:00 AMGo to full article

The Titanic's sinking on April 14, 1912 was the most famous seafaring disaster in modern times. But the survival of Noah's Ark in the Flood was the most famous seafaring success in ancient times. Did design specifications help make the difference? If so, that might help explain why the dimensions for Titanic II—a planned full-size replica luxury liner—will differ from the first Titanic.

 More...

 

New DNA Study Confirms Noah

 
‎Monday, ‎May ‎16, ‎2016, ‏‎10:00:00 AMGo to full article

Evolutionary teachings hold that all mankind arose from a population of ape-like ancestors. But Genesis, the rest of the Bible, and Jesus teach that mankind arose from Noah's three sons and their wives. A new analysis of human mitochondrial DNA exposes two new evidences that validate the biblical beginnings of mankind.

 More...

 

ICR Discovery Center: Encouraging Believers

 
‎Thursday, ‎May ‎12, ‎2016, ‏‎10:00:00 AMGo to full article

With engaging exhibits and a 3-D planetarium, ICR’s discovery center will show how scientific evidence confirms the Bible.  We want this project to encourage Christian believers that God’s Word can be trusted and  to equip them to defend their Christian faith.

 More...

 

Organic Residue Is 247 Million Years Old?

 
‎Monday, ‎May ‎9, ‎2016, ‏‎10:00:00 AMGo to full article

Those who have difficulty accepting reports of collagen (a type of protein) preserved in supposedly 80-million-year-old dinosaur bones will scratch their heads with new vigor over a recent report. Supposedly 247-million-year-old fossils from Poland show signs of excellent preservation and even hold blood vessels.

 More...

 

Wall-Climbing Cave Fish: Evolutionary Intermediate?

 
‎Thursday, ‎May ‎5, ‎2016, ‏‎10:00:00 AMGo to full article

Scientists recently discovered another bizarre fish. This one has a pelvic girdle. Is it the missing link evolutionists have been searching for?

 More...

 

ICR Discovery Center: Confirming Genesis

 
‎Monday, ‎May ‎2, ‎2016, ‏‎10:00:00 AMGo to full article

Genesis lays the foundation for every other book of the Bible, and it’s continually under attack. ICR’s discovery center will feature evidence demonstrating that all of the Bible—from beginning to end—can be trusted as God’s inspired Word.

 More...

 

Big Bang Continues to Self-Destruct

 
‎Monday, ‎April ‎25, ‎2016, ‏‎10:00:00 AMGo to full article

In modern cosmology, one of the most important numbers is the current value of the so-called "Hubble parameter." This number indicates the apparent expansion rate of the universe. A new study indicates that two different methods of estimating this number yield contradictory results.

 More...

 

Iron-mining Fungus Displays Surprising Design

 
‎Thursday, ‎April ‎21, ‎2016, ‏‎10:00:00 AMGo to full article

What happens when a soil fungus runs into a hard mineral containing precious trace amounts of nutritious iron? A poorly designed fungus might go hungry and languish like a forlorn noodle, but researchers recently found ways that a soil fungus conducts a miniature mining operation.

 More...

 

Monkey Business in the New Gorilla Genome

 
‎Monday, ‎April ‎18, ‎2016, ‏‎10:00:00 AMGo to full article

Old evolutionary assumptions seem hard to break. The recent assembling of ape DNA sequences based on the human genome provides a good example. This new gorilla genome study, despite capitalizing on advanced DNA sequencing technology, suffers from the same old malady.

 More...

 

ICR Discovery Center: Trusting God's Word

 
‎Thursday, ‎April ‎14, ‎2016, ‏‎10:00:00 AMGo to full article

Why is ICR building the new discovery center? Because the next generation needs to know that God’s Word can be trusted on all matters—including science.

 More...

 

Amber-Encased Lizards Showcase Recent Creation

 
‎Monday, ‎April ‎11, ‎2016, ‏‎10:00:00 AMGo to full article

Publishing online in Science Advances, a team of zoologists recognized familiar lizard forms in a dozen amber-encased lizard specimens. What did these lizards look like when they crawled around dinosaur feet? These Burmese ambers clearly show the answer.

 More...

 

ICR Discovery Center: Explaining the Scientific Method

 
‎Thursday, ‎April ‎7, ‎2016, ‏‎10:00:00 AMGo to full article

Drs. Jason Lisle and Jake Hebert talk about the scientific method in light of Scripture, evolutionary claims, and ICR’s biggest project yet.

 More...

 

Viral Genome Junk Hits the Trash

 
‎Monday, ‎April ‎4, ‎2016, ‏‎10:00:00 AMGo to full article

Evolutionists have long claimed that human chromosomes were infected with many different viruses over millions of years, which then multiplied in the genome. Then, as some of these sections of virus-like DNA were shown to be functional, evolutionists claimed they had become "tamed" like the domestication of wild animals. When virus-like DNA were first discovered, it was thought the majority of them would prove to be junk—until now.

 


 

 More...
 

Tyrannosaur Ancestral Tree Remains Limbless

 
‎Monday, ‎March ‎28, ‎2016, ‏‎10:00:00 AMGo to full article

Since Darwin's time, the lack of fossil evidence for vertical evolution has always been a problem for secular scientists. Now a recent paper published online in Scientific Reports attempts to map the ancestry of tyrannosaurs. Does it point us in the right direction?

 More...

 

ICR Discovery Center: Telling the Truth

 
‎Thursday, ‎March ‎24, ‎2016, ‏‎10:00:00 AMGo to full article

Why does ICR need to build this discovery center? Astrophysicist Dr. Jason Lisle describes what this ground-breaking project will accomplish and why it matters.

 More...

 

Evolutionary Tyranny Still Casts Cloud Over Science

 
‎Monday, ‎March ‎21, ‎2016, ‏‎10:00:00 AMGo to full article

A recent scientific paper published in the high-profile journal PLOS ONE made three separate references to the amazing design of the human hand…and rightly attributed them to the Creator. Evolutionists cried foul and raised such an uproar that the journal retracted the paper. Why?

 More...

 

ICR Discovery Center: Revealing Creation Evidence

 
‎Thursday, ‎March ‎17, ‎2016, ‏‎10:00:00 AMGo to full article

What kind of creation evidence can ICR reveal in the new museum? Science Writer Brian Thomas shares a few fascinating facts that refute evolution and confirm the authenticity of the Genesis account.

 More...

 

Tooth Study Takes Bite Out of Evolution

 
‎Monday, ‎March ‎14, ‎2016, ‏‎10:00:00 AMGo to full article

Secular scientists have told incredible stories for over a century about how fossil teeth supposedly support the idea that humans evolved from primates. A lack of knowledge about tooth development has provided fertile ground for wild speculations about evolving tooth sizes, skull shapes, foot shapes, and even life habits. A new report changes all that conjecture.

 More...

 

ICR Discovery Center: Equipping Believers

 
‎Thursday, ‎March ‎10, ‎2016, ‏‎10:00:00 AMGo to full article

“Always be ready to give a defense to everyone who asks you a reason for the hope that is in you” (1 Peter 3:15). Physicist Dr. Jake Hebert tells how ICR’s museum can equip you to defend your Christian faith.

 More...

 

China Spends Millions Searching for Aliens

 
‎Monday, ‎March ‎7, ‎2016, ‏‎10:00:00 AMGo to full article

China is spending almost 200 million dollars on an enormous radio antenna to listen for signs of alien intelligence. In the western hemisphere, millions of dollars were invested in the Search for Extraterrestrial Intelligence Institute (SETI) project but have turned up no evidence. The ever-growing number of barren and gaseous exoplanets discovered continues to elevate Earth's uniqueness. Apparently, China would love to be the first nation to make "first contact."

 More...

 

ICR Discovery Center: Impacting Lives for the Gospel

 
‎Thursday, ‎March ‎3, ‎2016, ‏‎10:00:00 AMGo to full article

Two-thirds of the children raised in conservative Christian families leave the church in disbelief by the time they get to college. Find out how ICR’s museum project can influence our culture, point people to God’s Word, and encourage them to respond with faith in Him.

 More...

 

ICR Discovery Center: It's Okay to Ask Dinosaur Questions

 
‎Friday, ‎February ‎26, ‎2016, ‏‎10:00:00 AMGo to full article

Brian Thomas shares how the ICR Discovery Center for Science and Earth History can impact the faith of countless people by giving solid answers to their creation questions.

 More...

 

Were Sauropods Wading in China?

 
‎Thursday, ‎February ‎25, ‎2016, ‏‎10:00:00 AMGo to full article

It's tough to beat a genuine dinosaur trackway for a fascinating glimpse of ancient life. Among the frozen tracks of giant, four-footed sauropod dinosaurs like Apatosaurus now frozen in stone, most preserve both hind feet and "hands"—or in tech speak, the "pes" and "manus." But newly exposed tracks from Gansu Province in northern China have experts scrabbling to explain why they only preserve sauropod hind feet.

 More...

 

Octopus Genome as Large as Human Genome

 
‎Monday, ‎February ‎22, ‎2016, ‏‎10:00:00 AMGo to full article

The amazing octopus continues to astonish scientists. "Octopuses are highly intelligent creatures," says Claire Little, a marine biologist at the Weymouth Sealife Center in southwest England. "They are classed as intelligent as the general home pet dog." Scientists recently sequenced the octopus' genome and found it's nearly the size of the human genome.

 More...

 

Delicate Silk Fossils Point to Creation

 
‎Friday, ‎February ‎19, ‎2016, ‏‎10:00:00 AMGo to full article

Numerous amazing fossils supposedly millions of years old contain original, non-mineralized biomolecules like collagen, elastin, ovalbumin, DNA, laminin, melanin, hemoglobin, and chitin. A new study presents evidence suggesting this list should now include silk.

 More...

 

 
 

Scientific American Content: Global

 

 

 

Browse and Search NASA Image Galleries

 

 


DVD

PRICE R 159.00

 

 

 

 

 

Transhumanism is an international intellectual and cultural movement supporting the use of science and technology to improve human mental and physical characteristics and capacities.

by Dr. Martin Erdmann


The human species can, if it wishes, transcend itself. We need a name for this new belief. Perhaps transhumanism will serve: man remaining man, but transcending himself, by realizing new possibilities of and for his human nature.
Julian Huxley
1st director of the United Nations Educational, Scientific and Cultural Organization (UNESCO) (wrote nearly fifty years ago)
Transhumanism is a word that is beginning to bubble to the top of our prophetic studies and horizon. Simply described, transhumanism is an international intellectual and cultural movement supporting the use of science and technology to improve human mental and physical characteristics and capacities - in essence, to create a "posthuman" society.
This is not a passing fad. Transhumanist programs are sponsored in institutions such as Oxford, Standford, and Caltech. Sponsorships come from organizations such as Ford, Apple, Intel, Xerox, Sun Microsystems, and others. DARPA, Defense Advanced Research Projects Agency, a technical department within the U.S. Department of Defense is also involved in transhumanist projects.
This briefing pack contains 2 hours of teachings
Available in the following formats
DVD:
1 Disc
2 M4A Files

More Info

 

 

Price R 159.00
 
 
 

 

 

 

DVD - R 159.00


 

 

 

Book   R169.00

 

 

 

Available in the following formats:
DVD
Price R 159.00
 
 
 

All prices are in South African Rand's.
 
 

 

 Preview

The Origins of Information: Exploring and Explaining Biological Information


 

In the 21st century, the information age has finally come to biology. We now know that biology at its root is comprised of information rich systems, such as the complex digital code encoded in DNA. Groundbreaking discoveries of the past decade are revealing the information bearing properties of biological systems.

Dr. Stephen C. Meyer, a Cambridge trained philosopher of science is examining and explaining the amazing depth of digital technology found in each and every living cell such as nested coding, digital processing, distributive retrieval and storage systems, and genomic operating systems.

Meyer is developing a more fundamental argument for intelligent design that is based not on a single feature like the bacterial flagellum, but rather on a pervasive feature of all living systems. Alongside matter and energy, Dr. Meyer shows that there is a third fundamental entity in the universe needed for life: information.

 

http://www.stephencmeyer.org/

Got Science? Genesis 1 and Evidence

 

 

 
DVD - R159.00
 

 

Many scientists say complex life just randomly happened.
Primordial soup + lightning strike = Bingo! Is there any shred of scientific evidence that life was CREATED as Genesis 1 claims? Dr. Stephen Meyer, author of SIGNATURE IN THE CELL, says not a shred. Rather, a ton. Learn good reasoning techniques here.
 
08 June 2012, 08:09:11 PM
 

Intelligent Design is not Creationism

 
08 June 2012, 08:09:11 PM | Robert CrowtherGo to full article

This article was originally published in the Daily Telegraph (UK) on January 29. Original Article In 2004, the distinguished philosopher Antony Flew of the University of Reading made worldwide news when he repudiated a lifelong commitment to atheism and affirmed the reality of some kind of a creator. Flew cited evidence of intelligent design in DNA and the arguments of "American [intelligent] design theorists" as important reasons for this shift. Since then, British readers have learnt about the theory of intelligent design (ID) mainly from media reports about United States court battles over the legality of teaching students about it. According to most reports, ID is a "faith-based" alternative to evolution based solely on religion. But is this accurate? As one of the architects of the theory, I know it isn't. Contrary to media reports, ID is not a religious-based idea, but an evidence-based scientific theory about life's origins. According to Darwinian biologists such as Oxford University's Richard Dawkins, living systems "give the appearance of having been designed for a purpose". But, for modern Darwinists, that appearance of design is illusory, because the purely undirected process of natural selection acting on random mutations is entirely sufficient to produce the intricate designed-like structures found in living organisms. By contrast, ID holds that there are tell-tale features of living systems and the universe that are best explained by a designing intelligence. The theory does not challenge the idea of evolution defined as change over time, or even common ancestry, but it disputes Darwin's idea that the cause of biological change is wholly blind and undirected. What signs of intelligence do design advocates see? In recent years, biologists have discovered an exquisite world of nanotechnology within living cells - complex circuits, sliding clamps, energy-generating turbines and miniature machines. For example, bacterial cells are propelled by rotary engines called flagellar motors that rotate at 100,000rpm. These engines look like they were designed by engineers, with many distinct mechanical parts (made of proteins), including rotors, stators, O-rings, bushings, U-joints and drive shafts. The biochemist Michael Behe points out that the flagellar motor depends on the co-ordinated function of 30 protein parts. Remove one of these proteins and the rotary motor doesn't work. The motor is, in Behe's words, "irreducibly complex". This creates a problem for the Darwinian mechanism. Natural selection preserves or "selects" functional advantages as they arise by random mutation. Yet the flagellar motor does not function unless all its 30 parts are present. Thus, natural selection can "select" the motor once it has arisen as a functioning whole, but it cannot produce the motor in a step-by-step Darwinian fashion. Natural selection purportedly builds complex systems from simpler structures by preserving a series of intermediates, each of which must perform some function. With the flagellar motor, most of the critical intermediate structures perform no function for selection to preserve. This leaves the origin of the flagellar motor unexplained by the mechanism - natural selection - that Darwin specifically proposed to replace the design hypothesis. Is there a better explanation? Based on our uniform experience, we know of only one type of cause that produces irreducibly complex systems: intelligence. Whenever we encounter complex systems - whether integrated circuits or internal combustion engines - and we know how they arose, invariably a designing intelligence played a role. Consider an even more fundamental argument for design. In 1953, when Watson and Crick elucidated the structure of the DNA molecule, they made a startling discovery. Strings of precisely sequenced chemicals called nucleotides in DNA store and transmit the assembly instructions - the information - in a four-character digital code for building the protein molecules the cell needs to survive. Crick then developed his "sequence hypothesis", in which the chemical bases in DNA function like letters in a written language or symbols in a computer code. As Dawkins has noted, "the machine code of the genes is uncannily computer-like". The informational features of the cell at least appear designed. Yet, to date, no theory of undirected chemical evolution has explained the origin of the digital information needed to build the first living cell. Why? There is simply too much information in the cell to be explained by chance alone. The information in DNA (and RNA) has also been shown to defy explanation by forces of chemical necessity. Saying otherwise would be like saying a headline arose as the result of chemical attraction between ink and paper. Clearly, something else is at work. DNA functions like a software program. We know from experience that software comes from programmers. We know that information - whether, say, in hieroglyphics or radio signals - always arises from an intelligent source. As the pioneering information theorist Henry Quastler observed: "Information habitually arises from conscious activity." So the discovery of digital information in DNA provides strong grounds for inferring that intelligence played a causal role in its origin. Thus, ID is not based on religion, but on scientific discoveries and our experience of cause and effect, the basis of all scientific reasoning about the past. Unlike creationism, ID is an inference from biological data. Even so, ID may provide support for theistic belief. But that is not grounds for dismissing it. Those who do confuse the evidence for the theory with its possible implications. Many astrophysicists initially rejected the Big Bang theory because it seemed to point to the need for a transcendent cause of matter, space and time. But science eventually accepted it because the evidence strongly supported it. Today, a similar prejudice confronts ID. Nevertheless, this new theory must also be evaluated on the basis of the evidence, not philosophical preferences. As Professor Flew advises: "We must follow the evidence, wherever it leads." Stephen C Meyer edited 'Darwinism, Design and Public Education' (Michigan State University Press). He has a PhD in philosophy of science from Cambridge University and is a senior fellow at the Discovery Institute in Seattle.

 

09 December 2011, 11:13:24 PM

New Research Supports Meyer's Discussion of Pre-Biotic Chemistry in Signature in the Cell

 
09 December 2011, 11:13:24 PM | Andrew McDiarmidGo to full article
A recent Nature publication reports a new technique for measuring the oxygen levels in Earth's atmosphere some 4.4 billion years ago. The authors found that by studying cerium oxidation states in zircon, a compound formed from volcanic magma, they could ascertain the oxidation levels in the early earth. Their findings suggest that the early Earth's oxygen levels were very close to current levels. This research supports Dr. Meyer's discussion in Signature in the Cell. On pgs. 224-226 of Ch. 10: Beyond the Reach of Chance, Meyer states that when Stanley Miller conducted his famous 1953 experiment simulating early Earth's atmosphere, he "assumed that the earth's atmosphere contained virtually no free oxygen." Meyer reveals that new geochemical evidence showed that the assumptions Miller had made about the early atmosphere were incorrect. This new research is additional confirmation that oxygen was present in significant quantities. Because oxygen quenches organic reactions necessary to produce essential building blocks of life, the ability of inorganic materials to produce organic life, as chemical evolutionary theory assumes, is not possible. Read the complete article at ENV.

 

Dr. Meyer Debates Signature in the Cell Arguments with Keith Fox on Premier Radio UK

24 November 2011, 12:37:19 AM | Andrew McDiarmidGo to full article
During a recent visit to London, Dr. Stephen Meyer debated Keith Fox on Premier Radio UK's "Unbelievable" program. Fox is a professor of biochemistry at Southampton University and Chair of the UK's Christians in Science network. Two years after its publication, Meyer's Signature in the Cell continues to make an impact with its powerful argument for design in DNA. In this lively conversation, Meyer and Fox discuss origins of life and the design inference in science.

 

« Overflowtoday.com asks Stephen Meyer if he's got science | Main

Dr. Meyer Debates Signature in the Cell Arguments with Keith Fox on Premier Radio UK


During a recent visit to London, Dr. Stephen Meyer debated Keith Fox on Premier Radio UK's "Unbelievable" program. Fox is a professor of biochemistry at Southampton University and Chair of the UK's Christians in Science network. Two years after its publication, Meyer's Signature in the Cell continues to make an impact with its powerful argument for design in DNA. In this lively conversation, Meyer and Fox discuss origins of life and the design inference in science.


 

 

Searching For The Truth On Origins
By Roger Oakland

4 DVD set

 

 

 

 

 

 

PRICE  R399.00

 

 ($49.00) equivalent

 


 

 

 

 

 

 

NASA Television
 

http://www.nasa.gov/audience/formedia/index.html


 

+27 11 969 0086


frosty@khouseafrica.com

 

 


Bible

DVD

+

MP3 on CD-ROM
Featured Commentaries

Learn the Bible

 in 24 hours



Old Testament


Genesis

Exodus

Leviticus

Numbers

Deuteronomy

Joshua and The Twelve Tribes

Judges

Ruth and Esther

I and II Samuel

I and II Kings

I and II Chronicles

Ezra & Nehemiah

Job

Psalms

Proverbs

Ecclesiastes

Song of Songs

Isaiah

Jeremiah

/Lamentations

Ezekiel

Daniel

Hosea

Joel and Amos

Jonah, Nahum & Obadiah

Micah

Zechariah

The Minor

Prophets

 



New Testament


Matthew

Mark

Luke

John

Acts

Romans

I & II Corinthians

Galatians

Ephesians

Philippians

Colossians and Philemon

I and II

Thessalonians

Timothy/

Titus/Philemon

Hebrews

James

I and II Peter

I, II, and III John

Jude

Revelation