“Bringing the world into focus
through the lens of Scripture”





K-House Africa


Banking Details


Radio 66/40




 Africa news





The Rise Of Islam












Global Government















Space & Science






 In The News provided by Koinonia House

Best viewed with Internet Explorer.



This page is dedicated to My Grandson Brandon.




by Chuck Missler


PRICE R 159.00





This DVD includes notes in PDF format and M4A files.

This briefing pack contains 2 hours of teachings

Available in the following formats

Session 1

• Epistemology 101: How do we “know”?

– Scientific Myths of the Past

– Scientific Myths of the Present

• The Macrocosm: The Plasma Universe: Gravitational Presumption?

• The Microcosm: The Planck Wall

• The Metacosm: Fracture of Hyperspace?

Session 2

• The Holographic Model: David Bohm

• GEO 600 “Noise”

• The Black Hole Paradox

– String Theorists examine the elephant

• A Holographic Universe:

– Distances are synthetic (virtual) images

– A Geocentric Cosmology?

– Some Scriptural Perspective(s)



“One can’t believe impossible things,”

Alice laughed.

“I daresay you haven’t had much practice,”

said the Queen.

“When I was your age, I always did it for

half-an-hour a day.

Why, sometimes I’ve believed as many

as six impossible things before breakfast.”

Through the Looking Glass

Lewis Carroll (Charles Lutwidge Dodgson)


1 Disc
2 M4A Files
Color, Fullscreen 16:9, Dolby Digital 2.0 stereo, Region  This DVD will be viewable in other countries WITH the proper DVD player and television set.)

M4A File Video

Can be burned to disc and played on MP4 compatible DVD players.
Playable on iPod, iPhone, iPod Touch
Playable on any MP4 player
1 PDF Notes File
2 MP3 Files








Featured Briefing

A Holographic Universe?

by Dr. Chuck Missler

Are we actually living in a holographic universe? Are the distant galaxies only a virtual illusion? In a hologram, distances are synthetic! How does this impact our concepts of time and space?

There seems to be growing evidence to suggest that our world and everything in it may be only ghostly images, projections from a level of reality so beyond our own that the real reality is literally beyond both space and time.1

The Cosmos As a Super-Hologram?

An initiating architect of this astonishing idea was one of the world’s most eminent thinkers: University of London physicist David Bohm, a protégé of Einstein’s and one of the world’s most respected quantum physicists. Bohm’s work in plasma physics in the 1950s is considered a landmark. Earlier, at the Lawrence Radiation Laboratory, he noticed that in plasmas (ionized gases) the particles stopped behaving as individuals and started behaving as if they were part of a larger and interconnected whole. Moving to Princeton University in 1947, there, too, he continued his work in the behavior of oceans of ionized particles, noting their highly organized overall effects and their behavior, as if they knew what each of the untold trillions of individual particles was doing.

One of the implications of Bohm’s view has to do with the nature of location. Bohm’s interpretation of quantum physics indicated that at the subquantum level location ceased to exist. All points in space become equal to all other points in space, and it was meaningless to speak of anything as being separate from anything else. Physicists call this property “nonlocality”. The web of subatomic particles that compose our physical universe—the very fabric of “reality” itself—possesses what appears to be an undeniable “holographic” property. Paul Davis of the University of Newcastle upon Tyne, England, observed that since all particles are continually interacting and separating, “the nonlocal aspects of quantum systems is therefore a general property of nature.”2

The Nature of Reality

One of Bohm’s most startling suggestions was that the tangible reality of our everyday lives is really a kind of illusion, like a holographic image. Underlying it is a deeper order of existence, a vast and more primary level of reality that gives birth to all the objects and appearances of our physical world in much the same way that a piece of holographic film gives birth to a hologram. Bohm calls this deeper level of reality the implicate (“enfolded”) order and he refers to our level of existence the explicate (unfolded) order.3 This view is not inconsistent with the Biblical presentation of the physical (“explicate”) world as being subordinate to the spiritual (“implicate”) world as the superior reality.4

The Search for Gravity Waves

Gravitational waves are extremely small ripples in the structure of spacetime caused by astrophysical events like supernovae or coalescing massive binaries (neutron stars, black holes). They had been predicted by Albert Einstein in 1916, but not yet directly observed.

GEO 600 is a gravitational wave detector located near Sarstedt, Germany, which seeks to detect gravitational waves by means of a laser interferometer of 600 meter arms’ length. This instrument, and its sister interferometric detectors, are some of the most sensitive gravitational wave detectors ever designed. They are designed to detect relative changes in distance of the order of 10-21, about the size of a single atom compared to the distance from the Earth to the Sun! Construction on the project began in 1995.

Mystery Noise

On January 15, 2009, it was reported in New Scientist that some yet unidentified noise that was present in the GEO 600 detector measurements might be because the instrument is sensitive to extremely small quantum fluctuations of space-time affecting the positions of parts of the detector. This claim was made by Craig Hogan, a scientist from Fermilab, on the basis of his theory of how such fluctuations should occur motivated by the holographic principle.5 Apparently, the gravitational wave detector in Hannover may have detected evidence for a holographic Universe!

Gravitational Wave Observatories Join Forces

A number of major projects will now pool their data to analyze it, jointly boosting their chances of spotting a faint signal that might otherwise be hidden by detector noise. Using lasers, they measure the length between mirrored test masses hung inside tunnels at right angles to each other. Gravitational waves decrease the distance between the masses in one tunnel and increase it in the other by a tiny, but detectable amount. Combining the data will also make it possible to triangulate to find the source of any gravitational waves detected. These include: Laser Interferometer Gravitational Observatory based in Hanford, Washington and Livingston, Louisiana; Virgo Observatory, Pisa Italy; and, of course, the GEO 600 Observatory near Hanover, Germany.

The most ambitious of them is the Laser Interferometer Space Antenna (LISA), a joint mission between NASA and the European Space Agency to develop and operate a space-based gravitational wave detector sensitive at frequencies between 0.03 mHz and 0.1 Hz. LISA seeks to detect gravitational-wave induced strains in space-time by measuring changes of the separation between fiducial masses in three spacecraft 5 million kilometers apart.

Cosmic Implications

Are we actually living in a holographic universe? Are the distant galaxies only a virtual illusion? In a hologram, distances are synthetic! How does this impact our concepts of time and space?

It gets even worse: Could our universe be geocentric? The implications are too staggering to embrace. The holographic paradigm is still a developing concept and riddled with controversies. For decades, science has chosen to ignore evidences that do not fit their standard theories. However, the volume of evidence has now reached the point that denial is no longer a viable option.

Clearly, 20th-century science has discovered that our “macrocosm”—studies of largeness—is finite, not infinite. Our universe is finite and had a beginning, and that’s what has led to the “big bang” speculations. We also realize that gravity is dramatically eclipsed by electromagnetic considerations when dealing with galaxies, etc. The plasma physicists have been trying to tell astronomers that for decades but no one was listening.

What is even more shocking has been the discoveries in the “microcosm”—studies of smallness—that run up against the “Planck Wall” of the non-location of subatomic particles, and the many strange paradoxes of quantum physics. We now discover that we are in a virtual reality that is a digital, simulated environment. The bizarre realization that the “constants” of physics are changing indicates that our “reality” is “but a shadow of a larger reality,”6 and that’s what the Bible has maintained all along!7

The Bible is, of course, unique in that it has always presented a universe of more than three dimensions,8 and revealed a Creator that is transcendent over His creation. It is the only “holy book” that demonstrates these contemporary insights. It’s time for us to spend more time with the handbook that the Creator has handed to us. It is the ultimate adventure, indeed!

For background information on the Holographic Universe, see our briefing series, The Beyond Collection, available on DVD and other formats, in the Christmas catalog insert in this issue.


  1. We explore the limitations of the Macrocosm, the Microcosm, and the super-embracing “Metacosm” in our Beyond Series.
  2. Paul Davis, Superforce, Simon & Schuster, New York, 1948, p.48.
  3. This is reminiscent of the Red King’s dream in Through the Looking Glass, in which Alice finds herself in deep metaphysical waters when the Tweedle brothers defend the view that all material objects, including ourselves, are only “sorts of things” in the mind of God.
  4. 2 Corinthians 4:18.
  5. Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. (Craig Hogan was then put in charge…)
  6. Scientific American, June 2005, “The Inconstancy of Constants”.
  7. Hebrews 11:3; John 1:1-3; et al.
  8. Ephesians 3:18. Nachmonides, writing in the 13th century, concluded, from his studies of the Genesis texts, that our universe has ten dimensions, of which only four are directly “knowable”.

The Physics of Immortality


by Dr. Chuck Missler

Price R 249.00



The Physics of Immortality

 This is an intensive review of what the Apostle Paul calls the most important chapter in the Bible: 1 Corinthians 15. Without it, “we are of all men most miserable.”
Did Jesus really rise from the dead? How do we know? Do we really believe it?
What kind of body did He have? Why did they have trouble recognizing Him?
How do we now know that we live within a digital virtual environment which is but “a shadow of a larger reality”? What are the implications of that “larger reality”? What is the relationship between “the twinkling of an eye” and Planck’s Constant for time (1043 seconds)?
Do you have your passport for the transit that’s coming? Are you really ready?
Join Dr. Chuck Missler in the Executive Briefing Room of the River Lodge, New Zealand, as he examines the physics of immortality.
This briefing pack contains 2 hours of teachings
Available in the following formats:
•1 Disc
•2 MP3 Files
•1 PDF Notes File

Published on Jan 28, 2015

Chuck Missler had the opportunity to sit discuss Zero Point Energy (ZPE) with Barry Setterfield 

Space News from SpaceDaily.com



Space News From SpaceDaily.Com



SpaceX aborts launch after 'odd' rocket engine behavior

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
Miami (AFP) Feb 18, 2017
SpaceX aborted its planned Dragon cargo launch to the International Space Station just seconds before liftoff Saturday due to a "slightly odd" technical issue with the Falcon 9 rocket engine. The delay was made "out of an abundance of caution," a SpaceX spokesman said, and came a day after engineers discovered a small helium leak in the engine's second stage. "All systems go, except the

Next SpaceX mission will deliver slew of experiment payloads to ISS

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
Kennedy Space Center FL (SPX) Feb 17, 2017
NASA's first cargo resupply mission of 2017 is poised to lift off from Kennedy Space Center in Florida loaded with almost 5,500 pounds of science experiments, research equipment and supplies bound for the International Space Station and its resident astronauts. The gear is packed into a SpaceX Dragon capsule that will fly into orbit aboard the company's Falcon 9 rocket. It will take two da

Art and space enter a new dimension

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
Paris (ESA) Feb 17, 2017
ESA's involvement in the world of art is entering a new dimension, thanks to the cooperation with the Italian artist Michelangelo Pistoletto, with the idea of making space activities as inclusive as possible for more of the public on Earth. Michelangelo Pistoletto is acknowledged as one of the founding fathers of the Italian Arte Povera contemporary art movement and is widely regarded as o

India Takes Russian Help to Analyze Chemical Composition of Lunar Surface

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
New Delhi (Sputnik) Feb 17, 2017
ISRO has started a series of ground tests for testing the performance of sensors and actuators for soft landing of the Lander on the lunar surface. India Space Research Organization (ISRO) has selected Russian company JSC Isotope for supply of Radionuclide curium-244 (Cm-244) that enables sources to determine chemical composition of any rocks and soils. "Supplied by JSC Isotope sourc

Looking for the next leap in rechargeable batteries

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
Los Angeles CA (SPX) Feb 17, 2017
USC researchers may have just found a solution for one of the biggest stumbling blocks to the next wave of rechargeable batteries - small enough for cellphones and powerful enough for cars. In a paper published in the January issue of the Journal of the Electrochemical Society, Sri Narayan and Derek Moy of the USC Loker Hydrocarbon Research Institute outline how they developed an alteration to t

SwRI scientist studies geology of Ceres to understand origin of organics

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
Boulder CO (SPX) Feb 17, 2017
NASA's Dawn spacecraft recently detected organic-rich areas on Ceres. Scientists evaluated the geology of the regions to conclude that the organics are most likely native to the dwarf planet. Data from the spacecraft suggest that the interior of Ceres is the source of these organic materials, as opposed to arriving via impacting asteroids or comets, according to a paper published in the Feb. 17,

Arecibo Observatory captures revealing images of Comet 45P/Honda-Mrkos-Pajdusakova

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
Columbia, MD (SPX) Feb 17, 2017
Though not visible to the naked eye or even with binoculars, the green-tailed Comet 45P/Honda-Mrkos-Pajdusakova (HMP) did not escape the gaze of the world-renowned Arecibo Observatory. Scientists from the University of Arizona's Lunar and Planetary Laboratory (LPL) and the Universities Space Research Association (USRA) at Arecibo Observatory have been studying the comet with radar to better unde

Curtiss-Wright offers COTS Module for measuring microgravity acceleration

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
Ashburn VA (SPX) Feb 17, 2017
Curtiss-Wright's Defense Solutions division has introduced the space industry's first COTS-based solution for measuring microgravity acceleration. Previously, the measurement of microgravity acceleration has required costly custom-designed electronic systems. What's more, the high cost of these solutions has encouraged the sharing of this capability by multiple users on-board the micrograv

Students play key biomedical research role in space

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
Boulder CO (SPX) Feb 17, 2017
Several students are playing significant roles in the upcoming launch of a SpaceX rocket carrying two CU Boulder payloads - one designed to help researchers better understand and perhaps outsmart dangerous infections like MRSA, another to help increase the proliferation of stem cells in space, a potential boon for biomedical therapy on Earth. Shelby Bottoms and Ben Lewis, both master's stu

Iridium Announces Target Date for Second Launch of Iridium NEXT

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
McLean, VA (SPX) Feb 17, 2017
Iridium Communications has announced it has received a targeted launch date of mid-June for the second mission of ten Iridium NEXT satellites. Originally anticipated for mid-April of 2017, the date has shifted due to a backlog in SpaceX's launch manifest as a result of last year's September 1st anomaly. This second launch will deliver another ten Iridium NEXT satellites to low-Earth-orbit

Lockheed Martin to build additional Trident II missiles

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
Washington (UPI) Feb 15, 2017
Lockheed Martin received a $540 million contract modification for Trident II ballistic fleet missile production and deployed system support. The modification supports production efforts for the U.S. Navy and the British Royal Navy. The Trident II is currently equipped on the U.S. Navy's Ohio-class submarines as well as the Royal Navy's Vanguard-class submarines. The U.S. Departme

Thales, Bharat Dynamics ink STARStreak capability transfer deal

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
London (UPI) Feb 15, 2017
Thales Group and Indian state-owned contractor Bharat Dynamics have signed off on exploring the transfer of technology for the STARStreak missile capability. A memorandum of understanding was inked by representatives from both parties in the presence of U.K. defense procurement leaders at the Aero India conference in Bengaluru. Under the agreement, Thales officials in Britain will suppo

Wide-area sensor flight-tested on small drone

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
Fairfax, Va. (UPI) Feb 15, 2017
Logos Technologies' Redkite wide-area sensor has successfully performed its initial flight test aboard a small, tactical unmanned aerial system. The test, using Insitu's integrator vehicle, was conducted earlier this month in Oregon and was the first time a wide-area motion imagery, or WAMI, system had been carried in the internal payload bay of a small UAS, Logos Technologies said.

Fossil discovery rewrites understanding of reproductive evolution

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
Brisbane, Australia (SPX) Feb 15, 2017
A remarkable 250 million-year-old "terrible-headed lizard" fossil found in China shows an embryo inside the mother - clear evidence for live birth. Head of The University of Queensland's School of Earth and Environmental Sciences and co-author Professor Jonathan Aitchison said the fossil unexpectedly provided the first evidence for live birth in an animal group previously thought to exclus

New study explains decade of glacial growth in New Zealand

‎Yesterday, ‎February ‎18, ‎2017, ‏‎10:47:48 PMGo to full article
Victoria, New Zealand (UPI) Feb 15, 2017
Globally, glaciers have been on the retreat for several decades. Between 1983 and 2008, however, at least 58 New Zealand glaciers grew in size. Scientists have struggled to explain their advance, but new analysis suggest a regional climate anomaly, a period of unusually cold temperatures, encouraged their growth. "Glaciers advancing is very unusual - especially in this period wh

Exoplanetary moons formed by giant impacts could be detected by Kepler

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Tucson AZ (SPX) Feb 15, 2017
NASA's Kepler observatory should be able to detect planetary moons - yet to be discovered - formed by far-away planetary collisions outside our solar system, research by Amy Barr of the Planetary Science Institute shows. The Kepler spacecraft has discovered thousands of exoplanets, but has not yet detected definitive signs of moons - exomoons - orbiting them. A pair of papers authored by B

Will androids dream of quantum sheep?

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Singapore (SPX) Feb 14, 2017
The word 'replicant' evokes thoughts of a sci-fi world where society has replaced common creatures with artificial machines that replicate their behaviour. Now researchers from Singapore have shown that if such machines are ever created, they'll run more efficiently if they harness quantum theory to respond to the environment. This follows the findings of a team from the Centre for Quantum

Stanford scientists measure African crop yields from space

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Palo Alto, Calif. (UPI) Feb 13, 2017
Researchers at Stanford University have developed a new method for accurately measuring crop yields using satellite images. Scientists hope their new strategy will help researchers track agricultural productivity in developing countries where farming data is limited. "Improving agricultural productivity is going to be one of the main ways to reduce hunger and improve livelihoods in poor

Subsea mining moves closer to shore

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Kiel, Germany (SPX) Feb 10, 2017
The demand for raw materials is rising continuously, forcing mining companies to use lower-grade ores and to explore at greater depths. This could lead to a decline in production in the coming decades. Many industrialized economies also depend on imports of metals for their high-tech industries. Some of these metals occur in ore deposits that are found only in a few countries. In order to

Scientists say Mars valley was flooded with water not long ago

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Dublin, Ireland (UPI) Feb 15, 2017
Researchers have discovered the signature of periodic groundwater flooding in a Martian valley - further evidence that water flowed on Mars in the not-so-distant past. Researchers from Trinity College Dublin suggest the patch of land on the Red Planet would be an ideal spot to search for signs of life. "On Earth, desert dunefields are periodically flooded by water in areas of fl

U.S. Marines test 'Instant Eye' mini drone

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Washington (UPI) Feb 14, 2017
Marines in Camp Lejune, N.C., recently completed training using the Instant Eye, a new hand-held unmanned aircraft designed to support reconnaissance missions. The Instant Eye is made by PSI Tactical, and is capable of taking off and landing at 90-degree angles. Many other unmanned aerial vehicles require either a runway or throwing for launch. According to the U.S. Marine Corps, the de

A new technique for creation of entangled photon states developed

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Moscow, Russia (SPX) Feb 15, 2017
Members of the Faculty of Physics, the Lomonosov Moscow State University have elaborated a new technique for creation of entangled photon states, exhibiting photon pairs, which get correlated (interrelated) with each other. Scientists have described their research in an article, published in the journal Physical Review Letters. Physicists from the Lomonosov Moscow State University have stu

Most stretchable elastomer for 3-D printing

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Singapore (SPX) Feb 10, 2017
Due to its excellent material properties of elasticity, resilience, and electrical and thermal insulation, elastomers have been used in a myriad of applications. They are especially ideal for fabricating soft robots, flexible electronics and smart biomedical devices which require soft and deformable material properties to establish safe and smooth interactions with humans externally and internal

The heart of a far-off star beats for its planet

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Boston MA (SPX) Feb 15, 2017
For the first time, astronomers from MIT and elsewhere have observed a star pulsing in response to its orbiting planet. The star, which goes by the name HAT-P-2, is about 400 light years from Earth and is circled by a gas giant measuring eight times the mass of Jupiter - one of the most massive exoplanets known today. The planet, named HAT-P-2b, tracks its star in a highly eccentric orbit, flyin

Spitzer hears stellar heartbeat from planetary companion

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Pasadena CA (JPL) Feb 15, 2017
A planet and a star are having a tumultuous romance that can be detected from 370 light-years away. NASA's Spitzer Space Telescope has detected unusual pulsations in the outer shell of a star called HAT-P-2. Scientists' best guess is that a closely orbiting planet, called HAT-P-2b, causes these vibrations each time it gets close to the star in its orbit. "Just in time for Valentine's Day,

No close partner for young, massive stars in Omega Nebula

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Amsterdam, Netherlands (SPX) Feb 15, 2017
Astronomers from Leuven and Amsterdam have discovered that massive stars in the star forming region M17 (the Omega Nebula) are - against expectations - not part of a close binary. They have started their lives alone or with a distant partner star. The researchers base their findings on data from the X-shooter spectrograph on ESO's Very Large Telescope in northern Chile. The Omega Nebula is

Scientists make huge dataset of nearby stars available to public

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Boston MA (SPX) Feb 14, 2017
The search for planets beyond our solar system is about to gain some new recruits. Today, a team that includes MIT and is led by the Carnegie Institution for Science has released the largest collection of observations made with a technique called radial velocity, to be used for hunting exoplanets. The huge dataset, taken over two decades by the W.M. Keck Observatory in Hawaii, is now available t

Increasing the sensitivity of next-generation gravitational wave detectors

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Washington DC (SPX) Feb 14, 2017
Nearly one year ago the LIGO Collaboration announced the detection of gravitational waves, once again confirming Einstein's theory of General Relativity. This important discovery by the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) has spurred great interest in improving these advanced optical detectors. The mission of gravitational wave scientists worldwide is to ma

Russian scientists find 13kg of meteorites in Iranian Desert

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Moscow (Sputnik) Feb 14, 2017
A team of Russian geologists from Ural Federal University recently returned from an expedition in the Lut desert in the east of Iran. The team found 13 kilograms of meteorite-like material. Sputnik Persian spoke with Viktor Grokhovsky a member of the Committee on Meteorites at the Academy of Sciences. "We planned to send an expedition to the Iranian desert Lut, intending to find a concentration

New dark matter detector in a race to finish line

‎Friday, ‎February ‎17, ‎2017, ‏‎4:38:40 AMGo to full article
Berkeley CA (SPX) Feb 14, 2017
The race is on to build the most sensitive U.S.-based experiment designed to directly detect dark matter particles. Department of Energy officials have formally approved a key construction milestone that will propel the project toward its April 2020 goal for completion. The LUX-ZEPLIN (LZ) experiment, which will be built nearly a mile underground at the Sanford Underground Research Facilit

NASA finds planets of red dwarf stars may face oxygen loss in habitable zones

‎Friday, ‎February ‎10, ‎2017, ‏‎6:12:06 AMGo to full article
Greenbelt MD (SPX) Feb 10, 2017
The search for life beyond Earth starts in habitable zones, the regions around stars where conditions could potentially allow liquid water - which is essential for life as we know it - to pool on a planet's surface. New NASA research suggests some of these zones might not actually be able to support life due to frequent stellar eruptions - which spew huge amounts of stellar material and radiatio

New high-performance computing cluster at the Albert Einstein Institute in Potsdam

‎Friday, ‎February ‎10, ‎2017, ‏‎6:12:06 AMGo to full article
Potsdam, Germany (SPX) Feb 07, 2017
The new supercomputer "Minerva" has been put into operation at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI). With 9,504 compute cores, 38 TeraByte memory and a peak performance of 302.4 TeraFlop/s it is more than six times as powerful as its predecessor. The scientists of the department "Astrophysical and Cosmological Relativity" can now compute significant

SpaceKnow raises $4 Million in Series A funding

‎Friday, ‎February ‎10, ‎2017, ‏‎6:12:06 AMGo to full article
San Francisco CA (SPX) Feb 10, 2017
SpaceKnow has announced the company has raised $4 million in Series A financing led by BlueYard Capital and previously existing investor Reflex Capital. This investment brings the company's total funds raised to approximately $5.5 million. Jason Whitmire, Partner at BlueYard, will join the Board of Directors. The funding will be used to further develop the SpaceKnow Artificial Intelligence

NASA Selects Top 20 Space Robotics Challenge Teams

‎Friday, ‎February ‎10, ‎2017, ‏‎6:12:06 AMGo to full article
Houston TX (SPX) Feb 08, 2017
NASA, in partnership with Space Center Houston - the official visitor center of NASA Johnson Space Center, and NineSigma, a global innovation consultant organization, has selected the top 20 teams in the Space Robotics Challenge. Eligible teams will be awarded $15,000 and advance to the final Virtual Competition, which will take place in June. The Space Robotics Challenge, part of NASA's C

Pure iron grains are rare in the universe

‎Friday, ‎February ‎10, ‎2017, ‏‎6:12:06 AMGo to full article
Sapporo, Japan (SPX) Feb 10, 2017
Pure iron grains in interstellar space are far rarer than previously thought, shedding new light on the evolution history of matters in the universe. Scientists are unsure what form iron takes in outer space even though it is one of its most abundant refractory elements. Extensive analysis of meteorites and other measurements show only low levels of gaseous iron and solid iron compounds, s

New laser technology from Hannover enables more sensitive gravitational-wave detectors

‎Friday, ‎February ‎10, ‎2017, ‏‎6:12:06 AMGo to full article
Munich, Germany (SPX) Feb 10, 2017
One year ago, the first direct detection of gravitational waves was announced. Laser experts from the Max Planck Institute for Gravitational Physics (Albert Einstein Institute; AEI), from the Leibniz Universitat Hannover, and from the Laser Zentrum Hannover e.V. (LZH) played leading roles in this discovery, because their super-precise laser technology at the heart of the LIGO instruments in the

Mars Reconnaissance Orbiter plays crucial role in search for landing sites

‎Friday, ‎February ‎10, ‎2017, ‏‎6:12:06 AMGo to full article
Pasadena CA (JPL) Feb 10, 2017
At an international workshop this week about where NASA's next Mars rover should land, most of the information comes from a prolific spacecraft that's been orbiting Mars since 2006. Observations by NASA's Mars Reconnaissance Orbiter (MRO) provide the basis for evaluating eight candidate landing sites for the Mars 2020 rover mission. The landing site workshop this week in Monrovia, Californ

Russian Space Agency Develops Program to Improve Carrier Rocket Assembly Quality

‎Friday, ‎February ‎10, ‎2017, ‏‎6:12:06 AMGo to full article
Moscow (Sputnik) Feb 07, 2017
Russia's Roscosmos has developed a special program to improve the Soyuz carrier rockets' quality amid an accident with the Progress cargo spacecraft two months ago. Russia's state space agency Roscosmos chief said Friday the agency has developed a special program to improve the assembly quality of Soyuz carrier rockets in wake of an accident with the Progress cargo spacecraft two months ago.

Looking to the future: Russia, US mull post-ISS cooperation in space

‎Friday, ‎February ‎10, ‎2017, ‏‎6:12:06 AMGo to full article
Moscow (Sputnik) Feb 10, 2017
NASA may have to book seats for American astronauts on Russian Soyuz spaceships in 2018. Radio Sputnik discussed the issue with John Logsdon, Professor Emeritus of Political Science and International Affairs at George Washington University. "The relationship between NASA and the former Soviet Union goes back a long way with the highlight being the 1975 Apollo-Soyuz project. But with Russia

ISRO saves its Mars mission spacecraft from eclipse

‎Friday, ‎February ‎10, ‎2017, ‏‎6:12:06 AMGo to full article
New Delhi (Sputnik) Feb 10, 2017
Scientists from Indian Space Research Organization (ISRO) have successfully executed crucial orbital maneuvering on Mars spacecraft to give it another lease of life. The Mission was facing imminent death as it was to face an eclipse during which dark shadows of Mars would block light to spacecraft's solar panel. After hours long remotely controlled execution which activated onboard t





News About Time And Space


Measuring time without a clock

‎Sunday, ‎February ‎12, ‎2017, ‏‎5:17:50 AMGo to full article
Lausanne, Switzerland (SPX) Feb 10, 2017 - EPFL scientists have been able to measure the ultrashort time delay in electron photoemission without using a clock. The discovery has important implications for fundamental research and cutting-edge technology. When light shines on certain materials, it causes them to emit electrons. This is called "photoemission" and it was discovered by Albert Einstein in 1905, winning him the Nobel Prize.

But only in the last few years, with advancements in laser technology, have scientists been able to approach the incredibly short timescales of photoemission. Researchers at EPFL have now determined a delay of one billionth of one billionth of a second in photoemission by measuring the spin of photoemitted electrons without the need of ultrashort laser pulses. The discovery is published in Physical Review Letters.

Photoemission has proven to be an important phenomenon, forming a platform for cutting-edge spectroscopy techniques that allow scientists to study the properties of electrons in a solid. One such property is spin, an intrinsic quantum property of particles that makes them look like as if they were rotating around their axis. The degree to which this axis is aligned towards a particular direction is referred to as spin polarization, which is what gives some materials, like iron, magnetic properties.

Although there has been great progress in using photoemission and spin polarization of photo-emitted electrons, the time scale in which this entire process takes places have not been explored in great detail.

The common assumption is that, once light reaches the material, electrons are instantaneously excited and emitted. But more recent studies using advanced laser technology have challenged this, showing that there is actually a time delay on the scale of attoseconds.

Time without a clock
The lab of Hugo Dil at EPFL, with colleagues in Germany, showed that during photoemission, the spin polarization of emitted electrons can be related to the attosecond time delays of photoemission. More importantly, they have shown this without the need for any experimental time resolution or measurement - essentially, without the need for a clock. To do this, the scientists used a type of photoemission spectroscopy (SARPES) to measure the spin of electrons photo-emitted from a crystal of copper.

"With lasers you can directly measure the time delay between different processes, but it is difficult to determine when a process starts - time zero," says Mauro Fanciulli, a PhD student of Dil's group and first author on the paper. "But in our experiment we measure time indirectly, so we don't have that problem - we could access one of the shortest timescales ever measured. The two techniques [spin and lasers], are complementary, and together they can yield a whole new realm of information."

The information about the timescale of photoemission is included in the wavefunction of the emitted electrons. This is a quantum description of the probability of where any given electron can be found at any given time. By using SAPRES, the scientists were able to measure the spin of the electrons, which in turn allowed them to access their wavefunction properties.

"The work is a proof of principle that can trigger further fundamental and applied research," says Hugo Dil. "It deals with the fundamental nature of time itself and will help understand the details of the photoemission process, but it can also be used in photoemission spectroscopy on materials of interest." Some of these materials include graphene and high-temperature superconductors, which Dil and his colleagues will be studying next.

Mauro Fanciulli, Henrieta Volfova, Stefan Muff, Jurgen Braun, Hubert Ebert, Jan Minar, Ulrich Heinzmann, J. Hugo Dil. Spin polarization and attosecond time delay in photoemission from spin degenerate states of solids. Physical Review Letters 08 February 2017. DOI: 10.1103/PhysRevLett.118.067402



Stars align in test supporting 'spooky action at a distance'

‎Sunday, ‎February ‎12, ‎2017, ‏‎5:17:50 AMGo to full article
Boston MA (SPX) Feb 08, 2017 - Quantum entanglement may appear to be closer to science fiction than anything in our physical reality. But according to the laws of quantum mechanics - a branch of physics that describes the world at the scale of atoms and subatomic particles - quantum entanglement, which Einstein once skeptically viewed as "spooky action at a distance," is, in fact, real.

Imagine two specks of dust at opposite ends of the universe, separated by several billion light years. Quantum theory predicts that, regardless of the vast distance separating them, these two particles can be entangled. That is, any measurement made on one will instantaneously convey information about the outcome of a future measurement on its partner. In that case, the outcomes of measurements on each member of the pair can become highly correlated.

If, instead, the universe behaves as Einstein imagined it should - with particles having their own, definite properties prior to measurement, and with local causes only capable of yielding local effects - then there should be an upper limit to the degree to which measurements on each member of the pair of particles could be correlated. Physicist John Bell quantified that upper limit, now known as "Bell's inequality," more than 50 years ago.

In numerous previous experiments, physicists have observed correlations between particles in excess of the limit set by Bell's inequality, which suggests that they are indeed entangled, just as predicted by quantum theory. But each such test has been subject to various "loopholes," scenarios that might account for the observed correlations even if the world were not governed by quantum mechanics.

Now, physicists from MIT, the University of Vienna, and elsewhere have addressed a loophole in tests of Bell's inequality, known as the freedom-of-choice loophole, and have presented a strong demonstration of quantum entanglement even when the vulnerability to this loophole is significantly restricted.

"The real estate left over for the skeptics of quantum mechanics has shrunk considerably," says David Kaiser, the Germeshausen Professor of the History of Science and professor of physics at MIT. "We haven't gotten rid of it, but we've shrunk it down by 16 orders of magnitude."

A research team including Kaiser; Alan Guth, the Victor F. Weisskopf Professor of Physics at MIT; Andrew Friedman, an MIT research associate; and colleagues from the University of Vienna and elsewhere has published its results in the journal Physical Review Letters.

Closing the door on quantum alternatives
The freedom-of-choice loophole refers to the idea that experimenters have total freedom in choosing their experimental setup, from the types of particles to entangle, to the measurements they choose to make on those particles. But what if there were some other factors or hidden variables correlated with the experimental setup, making the results appear to be quantumly entangled, when in fact they were the result of some nonquantum mechanism?

Physicists have attempted to address this loophole with extremely controlled experiments, in which they produce a pair of entangled photons from a single source, then send the photons to two different detectors and measure properties of each photon to determine their degree of correlation, or entanglement.

To rule out the possibility that hidden variables may have influenced the results, researchers have used random number generators at each detector to decide what property of each photon to measure, in the split second between when the photon leaves the source and arrives at the detector.

But there is a chance, however slight, that hidden variables, or nonquantum influences, may affect a random number generator before it relays its split-second decision to the photon detector.

"At the heart of quantum entanglement is the high degree of correlations in the outcomes of measurements on these pairs [of particles]," Kaiser says. "But what if a skeptic or critic insisted these correlations weren't due to these particles acting in a fully quantum mechanical way? We want to address whether there is any other way that those correlations could have snuck in without our having noticed."

"Stars aligned"
In 2014, Kaiser, Friedman, and their colleague Jason Gallicchio (now a professor at Harvey Mudd College) proposed an experiment to use ancient photons from astronomical sources such as stars or quasars as "cosmic setting generators," rather than random number generators on Earth, to determine the measurements to be made on each entangled photon.

Such cosmic light would be arriving at Earth from objects that are very far away - anywhere from dozens to billions of light years away. Thus, if some hidden variables were to interfere with the randomness of the choice of measurements, they would have had to have set those changes in motion before the time the light left the cosmic source, long before the experiment on Earth was conducted.

In this new paper, the researchers have demonstrated their idea experimentally for the first time. The team, including Professor Anton Zeilinger and his group at the University of Vienna and the Austrian Academy of Sciences, set up a source to produce highly entangled pairs of photons on the roof of a university laboratory in Vienna. In each experimental run, they shot the entangled photons out in opposite directions, toward detectors located in buildings several city blocks away - the Austrian National Bank and a second university building.

The researchers also set up telescopes at both detector sites and trained them on stars, the closest of which is about 600 light years away, which they had previously determined would send sufficient photons, or starlight, in their direction.

"On those nights, the stars aligned," Friedman says. "And with bright stars like these, the number of photons coming in can be like a firehose. So we have these very fast detectors that can register detections of cosmic photons on subnanosecond timescales."

"Out of whack" with Einstein
In the few microseconds before an entangled photon arrived at a detector, the researchers used each telescope to rapidly measure a property of an incoming stellar photon - in this case, whether its wavelength was redder or bluer than a particular reference wavelength.

They then used this random property of the stellar photon, generated 600 years ago by its star, to determine what property of the incoming entangled photons to measure. In this case, red stellar photons signaled a detector to measure an entangled photon's polarization in a particular direction. A blue stellar photon would set the device to measure the polarization of the entangled particle along a different direction.

The team conducted two experiments, with each experimental run lasting only three minutes. In each case, the researchers measured about 100,000 pairs of entangled photons. They found that the polarization measurements of the photon pairs were highly correlated, well in excess of the bound set by Bell's inequality, in a way that is most easily explained by quantum mechanics.

"We find answers consistent with quantum mechanics to an enormously strong degree, and enormously out of whack with an Einstein-like prediction," Kaiser says.

The results represent improvements by 16 orders of magnitude over previous efforts to address the freedom-of-choice loophole.

"All previous experiments could have been subject to this weird loophole to account for the results microseconds before each experiment, versus our 600 years," Kaiser says. "So it's a difference of a millionth of a second versus 600 years' worth of seconds - 16 orders of magnitude."

"This experiment pushes back the latest time at which the conspiracy could have started," Guth adds.

"We're saying, in order for some crazy mechanism to simulate quantum mechanics in our experiment, that mechanism had to have been in place 600 years ago to plan for our doing the experiment here today, and to have sent photons of just the right messages to end up reproducing the results of quantum mechanics. So it's very far-fetched."



A middleweight black hole is hiding at the center of a giant star cluster

‎Sunday, ‎February ‎12, ‎2017, ‏‎5:17:50 AMGo to full article
Boston MA (SPX) Feb 10, 2017 - All known black holes fall into two categories: small, stellar-mass black holes weighing a few Suns, and supermassive black holes weighing millions or billions of Suns. Astronomers expect that intermediate-mass black holes weighing 100 - 10,000 Suns also exist, but so far no conclusive proof of such middleweights has been found. Today, astronomers are announcing new evidence that an intermediate-mass black hole (IMBH) weighing 2,200 Suns is hiding at the center of the globular star cluster 47 Tucanae.

"We want to find intermediate-mass black holes because they are Harvard-Smithsonian Center for Astrophysics
between stellar-mass and supermassive black holes. They may be the primordial seeds that grew into the monsters we see in the centers of galaxies today," says lead author Bulent Kiziltan of the Harvard-Smithsonian Center for Astrophysics (CfA).

This work appears in the Feb. 9, 2017, issue of the prestigious science journal Nature.

47 Tucanae is a 12-billion-year-old star cluster located 13,000 light-years from Earth in the southern constellation of Tucana the Toucan. It contains thousands of stars in a ball only about 120 light-years in diameter. It also holds about two dozen pulsars that were important targets of this investigation.

47 Tucanae has been examined for a central black hole before without success. In most cases, a black hole is found by looking for X-rays coming from a hot disk of material swirling around it. This method only works if the black hole is actively feeding on nearby gas. The center of 47 Tucanae is gas-free, effectively starving any black hole that might lurk there.

The supermassive black hole at the center of the Milky Way also betrays its presence by its influence on nearby stars. Years of infrared observations have shown a handful of stars at our galactic center whipping around an invisible object with a strong gravitational tug. But the crowded center of 47 Tucanae makes it impossible to watch the motions of individual stars.

The new research relies on two lines of evidence. The first is overall motions of stars throughout the cluster. A globular cluster's environment is so dense that heavier stars tend to sink to the center of the cluster. An IMBH at the cluster's center acts like a cosmic "spoon" and stirs the pot, causing those stars to slingshot to higher speeds and greater distances. This imparts a subtle signal that astronomers can measure.

By employing computer simulations of stellar motions and distances, and comparing them with visible-light observations, the team finds evidence for just this sort of gravitational stirring.

The second line of evidence comes from pulsars, compact remnants of dead stars whose radio signals are easily detectable. These objects also get flung about by the gravity of the central IMBH, causing them to be found at greater distances from the cluster's center than would be expected if no black hole existed.

Combined, this evidence suggests the presence of an IMBH of about 2,200 solar masses within 47 Tucanae.

Since this black hole has eluded detection for so long, similar IMBHs may be hiding in other globular clusters. Locating them will require similar data on the positions and motions of both the stars and any pulsars within the clusters.



Exploring the matter that filled the early universe

‎Sunday, ‎February ‎12, ‎2017, ‏‎5:17:50 AMGo to full article
Chicago IL (SPX) Feb 07, 2017 - Theorists and scientists conducting experiments that recreate matter as it existed in the very early universe are gathered in Chicago this week to present and discuss their latest results. These experiments, conducted at the world's premier particle colliders - the Relativistic Heavy Ion Collider (RHIC) at the U.S. Department of Energy's Brookhaven National Laboratory, and the Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN) - are revealing intriguing information about the building blocks of visible matter and the force that holds them together in the universe today.

The Quark Matter 2017 conference (QM17) will feature new results describing the particles created as atomic nuclei smash into one another at nearly the speed of light at RHIC and the LHC. These "ultrarelativistic heavy-ion collisions" melt ordinary protons and neutrons, momentarily setting free their inner constituents - quarks and gluons - so scientists can study their behavior and interactions. The physicists want to sort out the detailed properties of the hot "quark-gluon plasma" (QGP), and understand what happens as this primordial soup cools and coalesces to form the more familiar matter of today's world.

The two scientific collaborations conducting nuclear physics research at RHIC-STAR and PHENIX, named for their house-sized detectors-will present findings that build on earlier discoveries at this DOE Office of Science User Facility. The two collaborations perform cross-checking analyses to verify results, while also exploiting each detector's unique capabilities and strengths for independent explorations. The QM17 presentations will showcase precision measurements made possible by recent detector upgrades.

"These results illustrate how a global community of dedicated scientists is taking full advantage of RHIC's remarkable versatility to explore in depth the structure of nuclear matter over a wide range of temperatures and densities to better understand the dynamic behavior of quarks and gluons and the strong nuclear force," said Berndt Mueller, Associate Laboratory Director for Nuclear and Particle Physics at Brookhaven Lab. "The latest RHIC findings indicate that RHIC sits at the 'sweet spot' for probing the most interesting questions about the quark-gluon plasma and its transition to matter as we know it."

The meeting will also feature talks on the planned upgrade of the PHENIX experiment to a new RHIC detector known as sPHENIX, which will have greatly increased capabilities for tracking subatomic interactions. In addition, at least one talk will focus on the scientific rationale for building an Electron-Ion Collider, a proposed future facility that would enable an in-depth exploration of gluons in protons and other nuclei, opening a new frontier in nuclear physics.

Select QM 2017 Highlights from RHIC

Does size really matter?
Before RHIC began operations in 2000, nuclear physicists suspected it would take collisions of large nuclei such as gold to produce enough heat to create quark-gluon plasma. Since then, RHIC's gold-gold smashups (and later collisions of lead nuclei at the LHC) have reliably recreated a soup of quarks and gluons that flows like a nearly "perfect" liquid with extraordinarily low viscosity. Scientists detect the flow by observing correlations in certain characteristics of particles streaming from the collisions even when they are relatively far apart. More recently, smashups of smaller nuclei such as helium and even single protons with the large nuclei have produced correlation patterns that suggest that smaller drops of QGP might be possible. The latest results, to be presented by PHENIX, come from collisions of protons with aluminum nuclei, and also from deuteron-gold collisions over a range of collision energies. Lowering the energy changes how long the QGP phase lasts, which should change the strength of the correlations. The new results also include the first analysis of particles emerging closest to the colliding beams in the forward and rearward directions, as tracked by the recently installed Forward Silicon Vertex Tracker. Adding this tracker to detector components picking up particles emerging more centrally, perpendicular to the colliding beams, gives the physicists a way to test in three dimensions how the correlations vary with the pressure gradients created by the asymmetrical collisions.

Discerning differences among heavy quarks
PHENIX's Central Barrel and Forward Silicon Vertex Tracker and STAR's high precision Heavy Flavor Tracker (HFT) give RHIC physicists access to studying the behavior of so-called heavy quarks, which go by the exotic names of "charm" and "bottom." These particles, produced in the QGP, start to decay into other particles a short distance from the collision zone, but those decay products eventually strike the trackers. By tracing their tracks, scientists can identify precisely where the decay took place. And since charm and bottom quarks have slightly different lifetimes before decaying, and therefore different travel distances, this method gives the scientists a way to tell them apart.

Going with the flow
One way scientists will use this data is to see how heavy quarks are affected by the QGP, and whether there are differences among them. Earlier indirect findings by PHENIX, later confirmed by STAR, already indicated that heavy quarks get swept up in the flow of the QGP, somewhat like a rock getting pulled along by a stream instead of sinking to the bottom. These observations formed part of the motivation for the construction of the STAR HFT. New data from the HFT to be presented by STAR provide the first direct evidence of heavy quark flow, and show that the interactions of these heavy particles with the QGP medium are strong. STAR's HFT is the first application of the silicon based Monolithic Active Pixel Sensor technology in a collider environment. The measurements show that the flow of a type of heavy particles called D0s, which contain a charm quark, follows the same trend as seen for lighter particles and can be described by the same viscous hydrodynamics. The unprecedented precision in this measurement will pave the path towards precisely determining one of the intrinsic transport properties of the QGP and tell us how quarks interact with it.

PHENIX will present precision results from its Central Barrel Vertex Detector showing that some heavy quarks are more affected by the QGP than others. The results show that charm quarks lose more energy in the QGP than heavier bottom quarks. With this high statistics data set, PHENIX will now be able to study how the energy-loss is affected by how central, or head-on, the collisions are. PHENIX will also present its first heavy-quark result from the Forward Silicon Vertex Tracker, measuring the total cross section of bottom quarks emerging in the forward and rearward directions in collisions between copper and gold ions.

Learning how particles grow
The STAR HFT has also made it possible to make the first measurements of a particle called Lambda c emerging from RHIC collisions. Lambda c is made of three quarks-just like protons and neutrons-but with one of the three being a heavy quark. These Lambda c particles are extremely difficult to tease out from the data. But because they can only be created in energetic particle collisions, they carry unique information about the conditions within. Studying this "sentry" information carried by the Lambda c should help scientists learn how relatively "free" quarks that populate the early-stage QGP eventually coalesce and combine to form the more familiar composite particles of ordinary matter.

Tracking high-momentum jets
Observing how jets of particles springing from individual quarks or gluons lose energy, or get "quenched," as they interact with the medium has been one major sign that RHIC's energetic collisions of gold on gold were forming QGP. STAR will present several new jet studies that provide further insights into both how this quenching occurs and how the lost energy re-emerges, In addition, PHENIX will present new results exploring the question of whether collisions of smaller particles with gold, which appear to create the flow patterns of QGP, also show evidence of jet quenching. Their results include data on jet energy loss in a variety of collision systems, both large and small. The method uses photons emitted opposite the jet to calibrate how much energy the jet should have to determine whether or not there was quenching. The data show some modifications to the jet structure and the yield of high-momentum particles inside the jets, but it is not yet clear how to interpret these results.

Taking the QGP's temperature
Tracking heavy quarks and particles made from them gives RHIC physicists a new way to zero in on a more precise temperature of the QGP-already known to be more than 250,000 times hotter than the center of the sun. The new precision comes from measuring how different bound states of heavy quark-antiquark pairs, held together with different amounts of energy, melt in the plasma. STAR counts up different types of these particles (for example, Upsilons, pairs of bottom and anti-bottom quarks, that come in several binding varieties) using another recently upgraded detector component called the Muon Telescope Detector. Muons are the decay products of the Upsilons. STAR uses these counts to look for a deficit of one type of Upsilon relative to another to set boundaries on the QGP temperature. The physicists are eager to compare their results with those from the LHC, where with higher collision energies, they expect to see higher temperatures.

PHENIX's measurements of temperature have relied on tracking photons, particles of light, emitted from the hot matter (think of the glow of an iron bar in a blacksmith's fire, where the color of the light is related to how hot the iron is). But PHENIX's photon data have uncovered something unusual: While collisions initially emit photons equally in all directions, fractions of a second later the emitted photons appear to have a directional preference that resembles the elliptical flow pattern of the perfect liquid QGP. This is intriguing because photons shouldn't interact with the matter-or even be produced in such measurable quantities as the matter produced in the collisions cools and expands. To explore this mystery, PHENIX measured thermal direct photons at different gold-gold collision energies (39, 62, and 200 billion electron volts, or GeV), as well as in the smaller collision system. The results they present will shed light on the sources of these direct photons.

Disentangling the effects of cold nuclear matter
RHIC physicists are also learning more about "cold" nuclear matter-the state of the nucleus, filled with a field of gluons, before it collides-and how to account for its effects when studying the hot QGP. In order to disentangle the effects of cold nuclear matter, PHENIX is comparing the suppression of the excited state of the bound charm-anti-charm particle known as Psi to its ground state. They are studying collisions of protons and helium with gold or aluminum-small systems where cold nuclear matter predominates-and will use these as a baseline for better understanding the sequential melting of the bound states in the hot QGP. Their findings indicate that the less tightly bound version of the Psi is more than twice as susceptible to the effects of cold nuclear matter than the more tightly bound version. This effect must be accounted for in analyzing the data from QGP-creating collisions where the presence of both cold and hot nuclear matter influences the results.

New way to turn down the energy
STAR has exploited RHIC's ability to collide nuclei over a wide range of collision energies, conducting a Beam Energy Scan to explore the creation of QGP and its transition to ordinary nuclear matter over a wide range of conditions. At QM17 they'll present data from collisions at the lowest energy yet. Instead of colliding one beam into the beam coming into the detector from the opposite direction, as occurs in most RHIC experiments, STAR placed a stationary target (a foil of gold) within the beam pipe inside STAR and aimed just one beam at the target. Like a collision in which one moving car crashes into one that is parked, this fixed-target collision lowered the impact compared to what would occur if both beams (or cars) were moving and colliding head on. Data from these low energy collisions will be an integral part of phase two of the Beam Energy Scan, which is enabled by improvements to the RHIC accelerator complex that allow for higher collision rates.



Middleweight Black Hole Hiding in Giant Star Cluster - embargo until Wednesday, 8 February 2017, at 1:00 pm

‎Sunday, ‎February ‎12, ‎2017, ‏‎5:17:50 AMGo to full article
Boston MA (SPX) Feb 08, 2017 - All known black holes fall into two categories: small, stellar-mass black holes weighing a few Suns, and supermassive black holes weighing millions or billions of Suns. Astronomers expect that intermediate-mass black holes weighing 100 to 10,000 Suns also exist, but so far no conclusive proof of such middleweights has been found. Today, astronomers are announcing new evidence that an intermediate-mass black hole (IMBH) weighing 2,200 Suns is hiding at the center of the globular star cluster 47 Tucanae.

"We want to find intermediate-mass black holes because they are Harvard-Smithsonian Center For Astrophysics
between stellar-mass and supermassive black holes. They may be the primordial seeds that grew into the monsters we see in the centers of galaxies today," says lead author Bulent Kiziltan of the Harvard-Smithsonian Center for Astrophysics (CfA).

47 Tucanae is a 12-billion-year-old star cluster located 13,000 light-years from Earth in the southern constellation of Tucana the Toucan. It contains hundreds of thousands of stars in a ball only about 120 light-years in diameter. It also holds about two dozen pulsars that were important targets of this investigation.

47 Tucanae has been examined for a central black hole before without success. In most cases, a black hole is found by looking for X-rays coming from a hot disk of material swirling around it. This method only works if the black hole is actively feeding on nearby gas. The center of 47 Tucanae is gas-free, effectively starving any black hole that might lurk there.

The supermassive black hole at the center of the Milky Way also betrays its presence by its influence on nearby stars. Years of infrared observations have shown a handful of stars at our galactic center whipping around an invisible object with a strong gravitational tug. But the crowded center of 47 Tucanae makes it impossible to watch the motions of individual stars.

The new research relies on two lines of evidence. The first is overall motions of stars throughout the cluster. A globular cluster's environment is so dense that heavier stars tend to sink to the center of the cluster. An IMBH at the cluster's center acts like a cosmic "spoon" and stirs the pot, causing those stars to slingshot to higher speeds and greater distances. This imparts a subtle signal that astronomers can measure.

By employing computer simulations of stellar motions and distances, and comparing them with visible-light observations, the team finds evidence for just this sort of gravitational stirring.

The second line of evidence comes from pulsars, compact remnants of dead stars whose radio signals are easily detectable. These objects also get flung about by the gravity of the central IMBH, causing them to be found at greater distances from the cluster's center than would be expected if no black hole existed.

Combined, this evidence suggests the presence of an IMBH of about 2,200 solar masses within 47 Tucanae.

Since this black hole has eluded detection for so long, similar IMBHs may be hiding in other globular clusters. Locating them will require similar data on the positions and motions of both the stars and any pulsars within the clusters.

This work appears in the Feb. 9, 2017, issue of the prestigious science journal Nature



Black Hole Meal Sets Record for Duration and Size

‎Sunday, ‎February ‎12, ‎2017, ‏‎5:17:50 AMGo to full article
Boston MA (SPX) Feb 07, 2017 - A giant black hole ripped apart a star and then gorged on its remains for about a decade, according to astronomers. This is more than 10 times longer than any observed episode of a star's death by black hole. Researchers made this discovery using data from NASA's Chandra X-ray Observatory and Swift satellite as well as ESA's XMM-Newton.

The trio of orbiting X-ray telescopes found evidence for a "tidal disruption event" (TDE), wherein the tidal forces due to the intense gravity from a black hole can destroy an object - such as a star - that wanders too close. During a TDE, some of the stellar debris is flung outward at high speeds, while the rest falls toward the black hole. As it travels inwards to be ingested by the black hole, the material becomes heats up to millions of degrees and generates a distinct X-ray flare.

"We have witnessed a star's spectacular and prolonged demise," said Dacheng Lin from the University of New Hampshire in Durham, New Hampshire, who led the study. "Dozens of tidal disruption events have been detected since the 1990s, but none that remained bright for nearly as long as this one."

The extraordinary long bright phase of this event spanning over 10 years means that among observed TDEs this was either the most massive star ever to be completely torn apart during one of these events, or the first where a smaller star was completely torn apart.

The X-ray source containing this force-fed black hole, known by its abbreviated name of XJ1500+0154, is located in a small galaxy about 1.8 billion light-years from Earth.

The source was not detected in a Chandra observation on April 2, 2005, but was detected in an XMM-Newton observation on July 23, 2005, and reached peak brightness in a Chandra observation on June 5, 2008. These observations show that the source became at least 100 times brighter in X-rays. Since then, Chandra, Swift, and XMM-Newton have observed it multiple times.

The sharp X-ray vision of Chandra data shows that XJ1500+0154 is located at the center of its host galaxy, the expected location for a supermassive black hole.

The X-ray data also indicate that radiation from material surrounding this black hole has consistently surpassed the so-called Eddington limit, defined by a balance between the outward pressure of radiation from the hot gas and the inward pull of the gravity of the black hole.

"For most of the time we've been looking at this object, it has been growing rapidly," said co-author James Guillochon of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "This tells us something unusual - like a star twice as heavy as our Sun - is being fed into the black hole."

The conclusion that supermassive black holes can grow, from TDEs and perhaps other means, at rates above those corresponding to the Eddington limit has important implications. Such rapid growth may help explain how supermassive black holes were able to reach masses about a billion times higher than the Sun when the universe was only about a billion years old.

"This event shows that black holes really can grow at extraordinarily high rates," said co-author Stefanie Komossa of QianNan Normal University for Nationalities in Duyun City, China. "This may help understand how precocious black holes came to be."

Based on the modeling by the researchers the black hole's feeding supply should be significantly reduced in the next decade. This would result in XJ1500+0154 fading in X-ray brightness over the next several years.

Research paper: "A Likely Decade-long Sustained Tidal Disruption Event," Dacheng Lin et al., 2017 Feb. 6, Nature Astronomy



Shaken, but not stirred

‎Sunday, ‎February ‎12, ‎2017, ‏‎5:17:50 AMGo to full article
Munich, Germany (SPX) Feb 03, 2017 - A team of researchers led by Ludwig-Maximilians-Universitaet (LMU) in Munich physics professor Immanuel Bloch has experimentally realized an exotic quantum system which is robust to mixing by periodic forces. When James Bond asks the barkeeper for a Martini ("shaken, not stirred"), he takes it for granted that the ingredients of the drink are miscible. If he were to place the order in a bar in the quantum realm, however, Agent 007 might be in for a surprise!

For a research team around the physicists Pranjal Bordia, Professor Immanuel Bloch (LMU and Max-Planck-Institute for Quantum Optics) and Professor Michael Knap (TU Munich, Physics Department and Institute for Advanced Study) has now prepared a form of quantum matter that is robust to shaking - a property that would make life difficult for cocktail lovers.

In fact, the problem with quantum matter normally lies in its very sensitivity to perturbation: The action of even weak oscillatory forces typically has drastic consequences in the long term and is expected to dramatically alter its initial state. Therefore - up until now - it had been widely assumed that quantum systems should normally be susceptible to mixing, since shaking injects energy into the system, and should cause it to heat up indefinitely.

But the Munich group has now experimentally characterized an exotic quantum state that does not behave in this way: When subjected to a periodic force, its constituents do not mix. The researchers first cooled a cloud of potassium atoms to an extremely low temperature in a vacuum chamber.

They then loaded the ultracold atoms into an optical lattice formed by counter-propagating laser beams that generate standing waves. Such a lattice can be thought of as a network of energy wells in which the atoms can be individually trapped, like the eggs in an egg carton.

"In addition, we were able to introduce disorder into the lattice in a controlled manner by randomly altering the depth of the individual wells," says Pranjal Bordia, first author of the new study.

By this means, the potassium atoms could be localized in special areas of the network, and were not evenly distributed within the lattice. The physicists then shook the lattice by periodically varying the intensity of the laser light. But the system turned out to be so stable that the localized groups of atoms did not mix. The potassium atoms were tossed about somewhat, but their overall distribution in the lattice remained intact.

The experiments confirm recently published predictions relating to a specific class of quantum systems in which disorder actually serves to localize quantum particles. Moreover, the observation that this newly realized exotic quantum state remained stable for an unexpectedly long time is supported by the results of subsequent high-performance numerical simulations.

The experimental demonstration of this quantum system could have practical consequences for efforts to develop robust quantum computers, and studies of exotic quantum states promise to yield new insights into fundamental issues in theoretical physics.

Research paper



Quantum phase transition observed for the first time

‎Sunday, ‎February ‎12, ‎2017, ‏‎5:17:50 AMGo to full article
Klosterneuburg, Austria (SPX) Feb 03, 2017 - A group of scientists led by Johannes Fink from the Institute of Science and Technology Austria (IST Austria) reported the first experimental observation of a first-order phase transition in a dissipative quantum system. Phase transitions are something we often encounter in everyday life when we watch the change of the state of matter, for example the freezing of water at the critical temperature of 0 degrees Celsius.

However, phase transitions also occur at the quantum mechanical level, where they are - in spite of their importance for various fields of physics - relatively unexplored.

One example of a phase transition at the quantum level is the photon-blockade breakdown, which was only discovered two years ago. During photon blockade, a photon fills a cavity in an optical system and prevents other photons from entering the same cavity until it leaves, hence blocking the flow of photons.

But if the photon flux increases to a critical level, a quantum phase transition has been predicted to occur: The photon blockade breaks down, and the state of the system changes from opaque to transparent. This specific phase transition has now been experimentally observed by researchers who, for the first time, managed to meet the very specific conditions that are necessary to fully study this effect.

During a phase transition, the continuous tuning of an external parameter, for example temperature, leads to a transition between two robust steady states with different attributes. First-order phase transitions are characterized by a coexistence of the two stable phases when the control parameter is within a certain range close to the critical value.

The two phases form a mixed-phase in which some parts have completed the transition and others have not, like in a glass in which ice and water are present at the same time. The experimental results that Fink and his collaborators will publish in the journal Physical Review X give an insight into the quantum mechanical basis of this effect in a microscopic, zero-dimensional system.

Their setup consisted of a microchip with a superconducting microwave resonator acting as the cavity and a few superconducting qubits acting as the atoms. The chip was cooled to a temperature astoundingly close to absolute zero - 0.01 Kelvin - so that thermal fluctuations did not play a role. To produce a flux of photons, the researchers then sent a continuous microwave tone to the input of the resonator on the chip.

On the output side they amplified and measured the transmitted microwave flux. For certain input powers they detected a signal flipping stochastically between zero transmission and full transmission: the expected coexistence of both phases had occurred.

"We have observed this random switching between opaque and transparent for the first time and in agreement with theoretical predictions," says lead author Johannes Fink from IST Austria.

Potential future applications are memory storage elements as well as processors for quantum simulation. "Our experiment took exactly 1.6 milliseconds to complete for any given input power. The corresponding numerical simulation took a couple of days on a national supercomputer cluster. This gives an idea why these systems could be useful for quantum simulations," Fink explains.

Johannes Fink came to IST Austria in 2016 to start his working group on Quantum Integrated Devices. The main objective of his group is to advance and integrate quantum technology for chip-based computation, communication, and sensing.

Research paper



Research pushes concept of entropy out of kilter

‎Sunday, ‎February ‎12, ‎2017, ‏‎5:17:50 AMGo to full article
Providence RI (SPX) Feb 03, 2017 - Entropy, the measure of disorder in a physical system, is something that physicists understand well when systems are at equilibrium, meaning there's no external force throwing things out of kilter. But new research by Brown University physicists takes the idea of entropy out of its equilibrium comfort zone. The research, published in Physical Review Letters, describes an experiment in which the emergence of a non-equilibrium phenomenon actually requires an entropic assist.

"It's not clear what entropy even means when you're moving away from equilibrium, so to have this interplay between a non-equilibrium phenomenon and an entropic state is surprising," said Derek Stein, a Brown University physicist and co-author of the work. "It's the tension between these two fundamental things that is so interesting."

The phenomenon the research investigated is known as "giant acceleration of diffusion," or GAD. Diffusion is the term used to describe the extent to which small, jiggling particles spread out. The jiggling refers to Brownian motion, which describes the random movement of small particles as a result of collisions with surrounding particles. In 2001, a group of researchers developed a theory of how Brownian particles would diffuse in a system that was pushed out of equilibrium.

Imagine jiggling particles arranged on a surface with undulating bumps like a washboard. Their jiggle isn't quite big enough to enable the particles to jump over the bumps in the board, so they don't diffuse much at all. However, if the board were tilted to some degree (in other words, moved out of equilibrium) the bumps would become easier to jump over in the downward-facing direction.

As tilt begins to increase, some particles will jiggle free of the washboard barriers and run down the board, while others will stay put. In physics terms, the particles have become more diffusive - more spread-out - as the system is moved out of equilibrium. The GAD theory quantifies this diffusivity effect and predicts that as tilt starts to increase, diffusivity accelerates. When the tilt passes the point where all the particles are able to jiggle free and move down the washboard, then diffusivity decreases again.

The theory is important, Stein says, because it's one of only a few attempts to make solid predictions about how systems behave away from equilibrium. It's been tested in a few other settings and has been found to make accurate predictions.

But Stein and his team wanted to test the theory in an unfamiliar setting - one that introduces entropy into the mix.

For the experiment, Stein and his colleagues placed DNA strands into nanofluidic channels - essentially, tiny fluid-filled hallways through which the molecules could travel. The channels were lined however with nanopits - tiny rectangular depressions that create deep spots within the relatively narrower channels.

At equilibrium, DNA molecules tend to arrange themselves in disordered, spaghetti-like balls. As a result, when a molecule finds its way into a nanopit where it has more room to form a disordered ball, it tends to stay stuck there. The pits can be seen as being somewhat like the dips between bumps on the theoretical GAD washboard, but with a critical difference: The only thing actually holding the molecule in the pit is entropy.

"This molecule is randomly jiggling around in the pit - randomly selecting different configurations to be in - and the number of possible configurations is a measure of the molecule's entropy," Stein explained. "It could, at some point, land on a configuration that's thin enough to fit into the channel outside the pit, which would allow it to move from one pit to another. But that's unlikely because there are so many more shapes that don't go through than shapes that do. So the pit becomes an 'entropic barrier.'"

Stein and his colleagues wanted to see if the non-equilibrium GAD dynamic would still emerge in a system where the barriers were entropic. They used a pump to apply pressure to the nanofluidic channels, pushing them out of equilibrium. They then measured the speeds of each molecule to see if GAD emerged. What they saw was largely in keeping with the GAD theory. As the pressure increased toward a critical point, the diffusivity of the molecules increased - meaning some molecules zipped across the channel while others stayed stuck in their pits.

"It wasn't at all clear how this experiment would come out," Stein said. "This is a non-equilibrium phenomenon that requires barriers, but our barriers are entropic and we don't understand entropy away from equilibrium."

The fact that the barriers remained raises interesting questions about the nature of entropy, Stein says.

"Non-equilibrium and entropy are two concepts that are kind of at odds, but we show a situation in which one depends on the other," he said. "So what's the guiding principle that tells what the tradeoff is between the two? The answer is: We don't have one, but maybe experiments like this can start to give us a window into that."

In addition to the more profound implications, there may also be practical applications for the findings, Stein says. The researchers showed that they could estimate the tiny piconewton forces pushing the DNA forward just by analyzing the molecules' motion. For reference, one newton of force is roughly the weight of an average apple. A piconewton is one trillionth of that.

The experiment also showed that, with the right amount of pressure, the diffusivity of the DNA molecules was increased by factor of 15. So a similar technique could be useful in quickly making mixtures. If such a technique were developed to take advantage of GAD, it would be a first, Stein says.

"No one has ever harnessed a non-equilibrium phenomenon for anything like that," he said. "So that would certainly be an interesting possibility."

Research paper



Study reveals substantial evidence of holographic universe

‎Sunday, ‎February ‎12, ‎2017, ‏‎5:17:50 AMGo to full article
Southampton, UK (SPX) Jan 31, 2017 - A UK, Canadian and Italian study has provided what researchers believe is the first observational evidence that our universe could be a vast and complex hologram. Theoretical physicists and astrophysicists, investigating irregularities in the cosmic microwave background (the 'afterglow' of the Big Bang), have found there is substantial evidence supporting a holographic explanation of the universe - in fact, as much as there is for the traditional explanation of these irregularities using the theory of cosmic inflation.

The researchers, from the University of Southampton (UK), University of Waterloo (Canada), Perimeter Institute (Canada), INFN, Lecce (Italy) and the University of Salento (Italy), have published findings in the journal Physical Review Letters. A holographic universe, an idea first suggested in the 1990s, is one where all the information, which makes up our 3D 'reality' (plus time) is contained in a 2D surface on its boundaries.

Professor Kostas Skenderis of Mathematical Sciences at the University of Southampton explains: "Imagine that everything you see, feel and hear in three dimensions (and your perception of time) in fact emanates from a flat two-dimensional field. The idea is similar to that of ordinary holograms where a three-dimensional image is encoded in a two-dimensional surface, such as in the hologram on a credit card. However, this time, the entire universe is encoded!"

Although not an example with holographic properties, it could be thought of as rather like watching a 3D film in a cinema. We see the pictures as having height, width and crucially, depth - when in fact it all originates from a flat 2D screen. The difference, in our 3D universe, is that we can touch objects and the 'projection' is 'real' from our perspective.

In recent decades, advances in telescopes and sensing equipment have allowed scientists to detect a vast amount of data hidden in the 'white noise' or microwaves (partly responsible for the random black and white dots you see on an un-tuned TV) left over from the moment the universe was created.

Using this information, the team were able to make complex comparisons between networks of features in the data and quantum field theory. They found that some of the simplest quantum field theories could explain nearly all cosmological observations of the early universe.

Professor Skenderis comments: "Holography is a huge leap forward in the way we think about the structure and creation of the universe. Einstein's theory of general relativity explains almost everything large scale in the universe very well, but starts to unravel when examining its origins and mechanisms at quantum level. Scientists have been working for decades to combine Einstein's theory of gravity and quantum theory. Some believe the concept of a holographic universe has the potential to reconcile the two. I hope our research takes us another step towards this."

The scientists now hope their study will open the door to further our understanding of the early universe and explain how space and time emerged.

Study reveals evidence that the universe is a hologram
Waterloo, Canada (SPX) Jan 31 - The first observational evidence that the universe could be a hologram has been published in the journal Physical Review Letters. The international study may lead to new beliefs on the Big Bang Theory and on quantum gravity, one of theoretical physics' most profound problems.

Researchers from the University of Waterloo, Perimeter Institute for Theoretical Physics, University of Southampton (UK), INFN, Lecce (Italy) and the University of Salento (Italy), believe the study further explains how space and time emerged.

"We are proposing using this holographic universe, which is a very different model of the Big Bang than the popularly accepted one that relies on gravity and inflation," said Niayesh Afshordi, professor of physics and astronomy at the University of Waterloo, and lead author in the study. "Each of these models makes distinct predictions that we can test as we refine our data and improve our theoretical understanding - all within the next five years."

Theoretical physicists and astrophysicists first identified the concept of a holographic universe in the 1990s. This week, researchers have published observational evidence to support a 2D holographic explanation of the universe. This work could lead to a functioning theory of quantum gravity, a theory that harmonizes quantum mechanics with Einstein's theory of gravity.

"The key to understanding quantum gravity is understanding field theory in one lower dimension," said Afshordi. "Holography is like a Rosetta Stone, translating between known theories of quantum fields without gravity and the uncharted territory of quantum gravity itself."

Holography, with its more simplified approach, allows the researchers to study the dense conditions of quantum gravity during the Big Bang at its boundary, which provides as much information as studying the Big Bang itself.



Scientists unveil new form of matter: Time crystals

‎Tuesday, ‎January ‎31, ‎2017, ‏‎11:47:00 AMGo to full article
Berkeley CA (SPX) Jan 27, 2017 - To most people, crystals mean diamond bling, semiprecious gems or perhaps the jagged amethyst or quartz crystals beloved by collectors. To Norman Yao, these inert crystals are the tip of the iceberg. If crystals have an atomic structure that repeats in space, like the carbon lattice of a diamond, why can't crystals also have a structure that repeats in time? That is, a time crystal?

In a paper published online last week in the journal Physical Review Letters, the University of California, Berkeley assistant professor of physics describes exactly how to make and measure the properties of such a crystal, and even predicts what the various phases surrounding the time crystal should be - akin to the liquid and gas phases of ice.

This is not mere speculation. Two groups followed Yao's blueprint and have already created the first-ever time crystals. The groups at the University of Maryland and Harvard University reported their successes, using two totally different setups, in papers posted online last year, and have submitted the results for publication. Yao is a co-author on both papers.

Time crystals repeat in time because they are kicked periodically, sort of like tapping Jell-O repeatedly to get it to jiggle, Yao said. The big breakthrough, he argues, is less that these particular crystals repeat in time than that they are the first of a large class of new materials that are intrinsically out of equilibrium, unable to settle down to the motionless equilibrium of, for example, a diamond or ruby.

"This is a new phase of matter, period, but it is also really cool because it is one of the first examples of non-equilibrium matter," Yao said. "For the last half-century, we have been exploring equilibrium matter, like metals and insulators. We are just now starting to explore a whole new landscape of non-equilibrium matter."

While Yao is hard put to imagine a use for a time crystal, other proposed phases of non-equilibrium matter theoretically hold promise as nearly perfect memories and may be useful in quantum computers.

An ytterbium chain
The time crystal created by Chris Monroe and his colleagues at the University of Maryland employs a conga line of 10 ytterbium ions whose electron spins interact, similar to the qubit systems being tested as quantum computers.

To keep the ions out of equilibrium, the researchers alternately hit them with one laser to create an effective magnetic field and a second laser to partially flip the spins of the atoms, repeating the sequence many times. Because the spins interacted, the atoms settled into a stable, repetitive pattern of spin flipping that defines a crystal.

Time crystals were first proposed in 2012 by Nobel laureate Frank Wilczek, and last year theoretical physicists at Princeton University and UC Santa Barbara's Station Q independently proved that such a crystal could be made. According to Yao, the UC Berkeley group was "the bridge between the theoretical idea and the experimental implementation."

From the perspective of quantum mechanics, electrons can form crystals that do not match the underlying spatial translation symmetry of the orderly, three-dimensional array of atoms, Yao said. This breaks the symmetry of the material and leads to unique and stable properties we define as a crystal.

A time crystal breaks time symmetry. In this particular case, the magnetic field and laser periodically driving the ytterbium atoms produce a repetition in the system at twice the period of the drivers, something that would not occur in a normal system.

"Wouldn't it be super weird if you jiggled the Jell-O and found that somehow it responded at a different period?" Yao said. "But that is the essence of the time crystal. You have some periodic driver that has a period 'T', but the system somehow synchronizes so that you observe the system oscillating with a period that is larger than 'T'."

Yao worked closely with Monroe as his Maryland team made the new material, helping them focus on the important properties to measure to confirm that the material was in fact a stable or rigid time crystal. Yao also described how the time crystal would change phase, like an ice cube melting, under different magnetic fields and laser pulsing.

The Harvard team, led by Mikhail Lukin, set up its time crystal using densely packed nitrogen vacancy centers in diamonds.

"Such similar results achieved in two wildly disparate systems underscore that time crystals are a broad new phase of matter, not simply a curiosity relegated to small or narrowly specific systems," wrote Phil Richerme, of Indiana University, in a perspective piece accompanying the paper published in Physical Review Letters.

"Observation of the discrete time crystal... confirms that symmetry breaking can occur in essentially all natural realms, and clears the way to several new avenues of research."

Yao is continuing his own work on time crystals as he explores the theory behind other novel but not-yet-realized non-equilibrium materials.



How fast is the universe expanding? Quasars provide an answer

‎Tuesday, ‎January ‎31, ‎2017, ‏‎11:47:00 AMGo to full article
Lausanne, Switzerland (SPX) Jan 27, 2017 - The H0LiCOW collaboration, a cosmology project led by EPFL and Max Planck Institute and regrouping several research organizations in the world has made a new measurement of the Hubble constant, which indicates how fast the universe is expanding. The new measurement challenges some of the most recent ones, potentially pointing towards new physics beyond the standard cosmological model.

Measuring how far objects are across space has led to great discoveries, for example that our universe is expanding. The rate of this expansion is determined by the current Standard Cosmological Model, "Lambda CDM", which puts the current expansion rate at about 72 km per second per megaparsec (a megaparsec is about 3.3 million light-years).

This rate is called the "Hubble constant", H0, and has been constantly refined for almost a century: a high-precision measurement of H0 has profound implication both in cosmology and in physics. Now, the H0LiCOW collaboration has used new tools to independently calculate the all-important Hubble constant with 3.8% precision.

The new figure agrees with recent independent studies, which are however in tension with the predictions of the Standard Cosmological Model, potentially pointing towards new physics. The work is published in five papers in the Monthly Notices of the Royal Astronomical Society.

A history of expansion
The expansion of the Universe, based on the idea that the Universe originated with the Big Bang, was first proposed by the Belgian cosmologist Georges Lemaitre. At around the same time, in the late 1920's, the astronomer Edwin Hubble was studying galaxies moving away from the Milky Way, and noticed that those farthest from Earth seemed to be moving faster.

What he was actually observing was the Universe expanding, and he set out to calculate its rate. Hubble's observations uncovered a constant that quantified this expansion, and which was later going to be named "the Hubble constant".

Over the years, measurements of H0 have been refined with ever-improving telescopes and more sensitive measuring tools. These tools include the Hubble telescope, which made measurements on Cepheid stars, a type of extremely bright star that pulsates radially in a predictable way, as well as exploding stars called supernovae. Another way of measuring the rate of the Universe's expansion is to use the cosmic microwave background (CMB): the almost constant background temperature across the universe known as the "afterglow" or "fossil radiation" of the Big Bang.

Quasars: a new measurement for the Hubble constant
The H0LiCOW collaboration has now independently measured the Hubble constant, exploiting a cosmic phenomenon called "gravitational lensing", whereby the enormous mass of galaxies bends spacetime. Galaxies act as lenses that can magnify and distort the normally faint image from objects further away. They can also produce several "lensed" images of the original objects, making them appear multiple.

To measure the Hubble constant, the scientists studied the light coming from five quasars seen multiple due to gravitational lensing from foreground galaxies. Quasars are supermassive black holes at the centers of galaxies and radiate huge amounts of electromagnetic energy.

The luminosity of quasars shows random variations over the years resulting in an apparent flickering of their intensity. This flickering is seen delayed in each lensed image of the quasar because the light takes different paths in each image. But the distance that the quasar light travels in each image depends of the expansion of the Universe, set by the Hubble constant.

As a consequence, measuring the time-delay between the lensed images of quasars provides a way to determine the Hubble constant. The H0LiCOW collaborators are world leaders in such measurements, notably though their COSMOGRAIL program using mainly the Swiss 1.2m telescope located in the Chilean Andes on the site of the European Southern Observatory.

Using this technique, the Hubble constant is measured with 3.8% accuracy within the framework of the Standard Cosmological Model. This is an independent measurement, since three strongly lensed quasars are enough to provide what the scientists call a standalone, "Time-Delay-Strong-Lensing cosmological probe".

The findings agree with the most recent measurements of the Hubble constant in the local Universe using Cepheids and supernovae. But they also disagree significantly with the much-publicized cosmic microwave background measurements made with the Planck satellite in 2015.

"The tension between local and CMB measurements of the Hubble constant is strengthened by the new strong lensing observations," says Frederic Courbin at EPFL's Laboratory of Astrophysics, which is part of H0LiCOW. "The tension can be caused by new physics beyond the Standard Cosmological Model, in particular new forms of dark energy."



Astronomers measure universe expansion, get hints of 'new physics'

‎Tuesday, ‎January ‎31, ‎2017, ‏‎11:47:00 AMGo to full article
Davis CA (SPX) Jan 27, 2017 - Astronomers have just made a new measurement of the Hubble Constant, the rate at which the universe is expanding, and it doesn't quite line up with a different estimate of the same number. That discrepancy could hint at "new physics" beyond the standard model of cosmology, according to the team, which includes physicists from the University of California, Davis, that made the observation.

The Hubble Constant allows astronomers to measure the scale and age of the universe and measure the distance to the most remote objects we can see, said Chris Fassnacht, a physics professor at UC Davis and a member of the international H0LiCOW collaboration which carried out the work.

Lead by Sherry Suyu at the Max Planck Institute for Astrophysics in Germany, the H0LICOW team used the NASA/ESA Hubble Space Telescope and other space- and Earth-based telescopes, including the Keck telescopes in Hawaii, to observe three galaxies and arrive at an independent measurement of the Hubble Constant. Eduard Rusu, a postdoctoral researcher at UC Davis, is first author on one of five papers describing the work, due to be published in the Monthly Notices of the Royal Astronomical Society.

"The Hubble constant is crucial for modern astronomy as it can help to confirm or refute whether our picture of the Universe - composed of dark energy, dark matter and normal matter - is actually correct, or if we are missing something fundamental," Suyu said.

Dark energy is a mysterious force which makes up about three-quarters of the universe and drives cosmic expansion. Dark matter makes up about a quarter of the universe and exerts a gravitational pull on visible, "normal" matter and light.

Gravitational Lenses Bend Light from Quasar
The H0LiCOW astronomers measured the Hubble Constant by exploiting massive galaxies that act as "gravitational lenses," bending light from a yet more distant object.

They studied three such galaxies, each of which is bending light from an even more distant quasar, a cosmic object whose brightness fluctuates randomly. In each case the gravitational lens creates multiple images of the quasar.

Because mass is not evenly distributed through these massive galaxies, some areas bend or slow light more than others. So light from the quasar will arrive at slightly different times depending on the route it takes through the lens, just as drivers who set off from one city to another at the same time, but travel by different routes, will arrive at different times. By analyzing that "traffic delay," the researchers could arrive at a figure for the Hubble Constant.

Rusu's contribution was to measure the distribution of mass along the line of sight from quasar to telescope. Other team members measured the time delay for light, and the distribution of mass within the lensing galaxy.

"These three things allow us to get a precise measure of the Hubble Constant," Fassnacht said.

Hint of New Physics
The Hubble Constant estimate from H0LiCOW, 71.9+/-2.7 kilometers per second per megaparsec, is accurate to 3.8 percent. The figure is in close agreement with measurements by other astronomers based on observations of supernovae, or of variable stars called Cepheids. But these estimates are rather different from that obtained from the Planck space telescope, which measured radiation from the cosmic microwave background.

The Planck measurement does rely on some assumptions, for example that the universe is flat, Fassnacht said. Or, the difference could be a statistical fluctuation that will disappear as the estimates get better - or it could be something more exciting.

"If you still see something when the error bars shrink, maybe it's new physics, beyond the Standard Model of cosmology," Fassnacht said.

The H0LiCOW team plans to shrink those error bars by carrying out the same measurements for up to 100 lensed quasars, Fassnacht said.



Faster-than-Expected Expansion of the Universe Supported

‎Tuesday, ‎January ‎31, ‎2017, ‏‎11:47:00 AMGo to full article
Garching, Germany (SPX) Jan 27, 2017 - By using galaxies as giant gravitational lenses, an international group of astronomers including researchers at the Max Planck Institute for Astrophysics have made an independent measurement of how fast the universe is expanding. The newly measured expansion rate for the local universe is consistent with earlier findings. These are, however, in intriguing disagreement with measurements of the early universe. This hints at a fundamental problem at the very heart of our understanding of the cosmos.

The Hubble constant - the rate at which the universe is expanding - is one of the fundamental quantities describing our universe. A group of astronomers, the H0LiCOW collaboration, used the NASA/ESA Hubble Space Telescope and other telescopes in space and on the ground to observe five galaxies in order to arrive at an independent measurement of the Hubble constant. The new measurement is completely independent of - but in excellent agreement with - other measurements of the Hubble constant in the local universe that used Cepheid variable stars and supernovae as points of reference.

The collaboration is led by Sherry Suyu, who recently moved from the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) in Taipei (Taiwan) to Garching (Germany) where she works now at the Max Planck Institute for Astrophysics and the Technical University of Munich as group leader and tenure track professor in the Max Planck@TUM programme.

However, the value measured by Suyu and her team, as well as those measured using Cepheids and supernovae, are different from the measurement made by the ESA Planck satellite. But there is an important distinction - Planck measured the Hubble constant for the early universe by observing the cosmic microwave background.

While the value for the Hubble constant determined by Planck fits with our current understanding of the cosmos, the values obtained by the different groups of astronomers for the local universe are in disagreement with our accepted theoretical model of the universe.

"The expansion rate of the universe is now starting to be measured in different ways with such high precision that actual discrepancies may possibly point towards new physics beyond our current knowledge of the universe," elaborates Suyu.

The targets of the study were massive galaxies positioned between Earth and very distant quasars - incredibly luminous galaxy cores. The light from the more distant quasars is bent around the huge masses of the galaxies as a result of strong gravitational lensing - an effect first predicted by Swiss astronomer Fritz Zwicky 80 years ago. This creates multiple images of the background quasar and its host galaxy, some smeared into extended arcs.

Because galaxies do not create perfectly spherical distortions in the fabric of space and the lensing galaxies and quasars are not perfectly aligned, the light from the different images of the background quasar follows paths which have slightly different lengths.

Since the brightness of quasars changes over time, astronomers can see the different images flicker at different times, the delays between them depending on the lengths of the paths the light has taken. These delays are directly related to the value of the Hubble constant.

"Our method is the most simple and direct way to measure the Hubble constant as it only uses geometry and General Relativity, no other assumptions," explains co-lead Frederic Courbin from EPFL, Switzerland.

Using the accurate measurements of the time delays between the multiple images, as well as computer models, has allowed the team to determine the Hubble constant to an impressively high precision: 3.8%."To reach that accuracy, we even considered the lensing effects of all other nearby galaxies in our analysis," explains Stefan Hilbert from the Excellence Cluster Universe.

"An accurate measurement of the Hubble constant is one of the most sought-after prizes in cosmological research today," highlights team member Vivien Bonvin, from EPFL, Switzerland. And Suyu adds: "The Hubble constant is crucial for modern astronomy as it can help to confirm or refute whether our picture of the universe - composed of dark energy, dark matter and normal matter - is actually correct, or if we are missing something fundamental."



Boron atoms stretch out, gain new powers

‎Tuesday, ‎January ‎31, ‎2017, ‏‎11:47:00 AMGo to full article
Houston TX (SPX) Jan 31, 2017 - Hold on, there, graphene. You might think you're the most interesting new nanomaterial of the century, but boron might already have you beat, according to scientists at Rice University.

A Rice team that simulated one-dimensional forms of boron - both two-atom-wide ribbons and single-atom chains - found they possess unique properties. The new findings appear this week in the Journal of the American Chemical Society.

For example, if metallic ribbons of boron are stretched, they morph into antiferromagnetic semiconducting chains, and when released they fold back into ribbons.

The 1-D boron materials also have mechanical stiffness on a par with the highest-performing known nanomaterials.

And they can act as nanoscale, constant-force springs.

Experimental labs are making progress in synthesizing atom-thin and fullerene-type boron, which led Rice researcher Boris Yakobson to think 1-D boron may eventually become real as well.

Yakobson's lab creates atom-level computer simulations of materials that do not necessarily exist - yet. Simulating and testing their energetic properties helps guide experimentalists working to create real-world materials. Carbon-atom chains known as carbyne, boron fullerenes and two-dimensional films called borophene, all predicted by the Rice group, have since been created by labs.

"Our work on carbyne and with planar boron got us thinking that a one-dimensional chain of boron atoms is also a possible and intriguing structure," Yakobson said. "We wanted to know if it is stable and what the properties would be. That's where modern theoretical-computational methods are impressive, because one can do pretty realistic assessments of non-existing structures.

"Even if they never exist, they're still important since we're probing the limits of possibility, sort of the final frontier," he said.

One-dimensional boron forms two well-defined phases - chains and ribbons - which are linked by a "reversible phase transition," meaning they can turn from one form to the other and back.

To demonstrate these interesting chemomechanics, the researchers used a computer to "pull" the ends of a simulated boron ribbon with 64 atoms. This forced the atoms to rearrange into a single carbyne-like chain. In their simulation, the researchers left a fragment of the ribbon to serve as a seed, and when they released the tension, the atoms from the chain neatly returned to ribbon form.

"Boron is very different from carbon," Yakobson said. "It prefers to form a double row of atoms, like a truss used in bridge construction. This appears to be the most stable, lowest-energy state.

"If you pull on it, it starts unfolding; the atoms yield to this monatomic thread. And if you release the force, it folds back," he said. "That's quite fun, structurally, and at the same time it changes the electronic properties.

"That makes it an interesting combination: When you stretch it halfway, you may have a portion of ribbon and a portion of chain. Because one of them is metal and the other is a semiconductor, this becomes a one-dimensional, adjustable Schottky junction." A Schottky junction is a barrier to electrons at a metal-semiconductor junction and is commonly used in diodes that allow current to flow in only one direction.

As a ribbon, boron is "a true 1-D metal robust to distortion of its crystalline lattice (a property known as Peierls distortion)," the researchers wrote. That truss-like construct gives the material extraordinary stiffness, a measure of its ability to resist deformation from an applied force.

As a chain of atoms, the material is also a strain-tunable, wide-gap antiferromagnetic semiconductor. In an antiferromagnet, the atomic moments - the direction of the atoms' "up" or "down" spin states - align in opposite directions.

This coupling of magnetic state and electronic transport may be of great interest to researchers studying spintronics, in which spin states may be manipulated to create high-performance electronic devices. "It may be very useful because instead of charge transport, you can have spin transport. That's considered an important direction for devices that make use of spintronics," he said.

One-dimensional boron's springiness is also interesting, Yakobson said. "It's also a special spring, a constant-force spring," he said. "The more you stretch a mechanical spring, the more the force goes up. But in the case of 1-D boron, the same force is required until the spring becomes fully stretched. If you keep pulling, it will break. But if you release the force, it completely folds back into a ribbon. It's a mechanically nice structure." That property could be useful in nanoscale sensors to gauge very small forces, he said.

Research paper



Can the donut-shaped magnet 'CAPPuccino submarine' hunt for dark matter?

‎Tuesday, ‎January ‎31, ‎2017, ‏‎11:47:00 AMGo to full article
Seoul, South Korea (SPX) Jan 24, 2017 - Scientists at the Center for Axion and Precision Physics Research (CAPP), within the Institute for Basic Science (IBS) optimized some of the characteristics of the magnet to hunt for one possible component of dark matter called axion.

Although it sounds hard to believe, everything we see with our naked eyes or through microscopes and telescopes accounts for just 4% of the known Universe. The rest comprises dark energy (69%) and dark matter (27%). Although there seems to be more dark matter than visible matter in the Universe, we still have not been able to directly detect it. The reason is that dark matter does not emit light or absorb electromagnetic waves, so it is really hard to observe.

Interestingly, dark matter is needed to explain the motions of galaxies and some of the current theories of galaxy formation and evolution. For example, the galaxy that contains our solar system, the Milky Way, seems to be enveloped by a much larger halo of dark matter. Its halo is quite different from the one we draw behind angels; it is actually invisible, but its existence is inferred through its effects on the motions of stars and gases.

Although dark matter particles have not been detected so far, scientists know that these particles have a very small mass and are distributed throughout the Universe. One dark matter particle candidate is the axion. Axions have extremely weak interactions with matter and so scientists need special equipment to catch their presence.

Specifically, scientists use the so-called axion to two-photons coupling technique, which takes advantage of the fact that an axion passing through a strong magnetic field can interact with a photon and convert into another photon. To record this interaction, IBS scientists are in the process of building haloscopes in Daejeon in South Korea.

Haloscopes contain resonant cavities immersed in extra-strong magnetic field. "In simple terms, you can image the resonant cavity as a cylinder, like a soft drink can, where the energy of the photons generated from the axions-photons interaction is amplified," explains KO Byeong Rok, first author of this study.

The magnets used for these types of experiments so far have the shape of a coil wound into a helix, technically known as a solenoid. However, depending on the height of the magnet, there is the risk of losing the signal coming from the axion-photon interaction. For this reason, IBS scientists decided to look deeper into another type of magnets shaped like donuts, called toroidal magnets.

"Magnets are the most important feature of the haloscope, and also the most expensive. While other experiments seeking to detect dark matter around the world use solenoid magnets, we are the first to try to use toroidal magnets. Since it has never been used before, you cannot easily buy the equipment, so we develop it ourselves," explains Professor Ko.

In order to hunt the axion, scientists need to get out in front of it, and predict the magnitude of the electromagnetic energy expected from the axion-to-photon conversion. Electromagnetic energy is due to the sum of electric and magnetic energies. Both of them can be easily calculated for a solenoid magnet, but if the magnet is toroidal shaped, it is practically impossible to calculate the magnetic energy analytically. Because of this, it was believed that toroidal magnets could not be used for the haloscope.

This paper from IBS shows the opposite. Starting from an adjusted version of the Maxwell equation, which defines how charged particles give rise to electric and magnetic forces. Scientists found that electric energy and magnetic energy from the axion-photon interaction are equal in both types of magnets. Therefore, even though the magnetic energy of a toroidal magnet is unknown, in order to obtain the electromagnetic energy which is the sum of the two, it is possible to double up the electric energy and obtain the magnetic energy.

Another finding is that the energy emitted from the interaction and conversion of the axion to photon is independent from the position of the cavity inside a solenoid magnet. However, this is not the case for toroid magnets.

IBS CAPP scientists have nicknamed the toroidal cavity "CAPPuccino submarine" because its color resembles the beverage, and its particular shape. All the theoretical findings published in this paper are going to form a solid background for the development and prototyping of new machines for the search of dark matter.

Research paper



Magnetic moment of a single antiproton determined with greatest precision ever

‎Tuesday, ‎January ‎31, ‎2017, ‏‎11:47:00 AMGo to full article
Mainz, Germany (SPX) Jan 20, 2017 - As self-evident as it is that matter exists, its origins are just as mysterious. According to the principles of particle physics, when the universe was originally formed equal amounts of matter and antimatter would have been created, which then should have destroyed each other in a process that physicists call annihilation.

But in reality, our universe shows a manifest imbalance in favor of matter. Therefore, scientists are looking for a small difference between a particle and its antiparticle that could explain why matter actually exists.

The multinational Baryon Antibaryon Symmetry Experiment (BASE) collaboration at the CERN research center has set a new benchmark in this search by successfully measuring an important characteristic of the antiproton with the greatest accuracy ever achieved. The g-factor, a quantity that characterizes the magnetic moment, has been measured with a precision increased by a factor of six compared to previous results.

The idea that something like anti-matter must exist came up in the late 1920s. It was only a few years later that positrons, the antiparticles of electrons, were discovered. While positrons occur naturally on Earth, antiprotons, the antiparticles of protons, have to be artificially generated.

The Antiproton Decelerator storage ring at CERN produces cooled antiprotons in large quantities for a wide range of antimatter experiments. In the experiments carried out by the BASE group, of which Johannes Gutenberg University Mainz (JGU) is a member, single ultracold antiprotons are studied in an electromagnetic particle trap.

The system consists of three Penning traps. A reservoir trap stores a cloud of antiprotons for the experiment and supplies single particles to the co-magnetometer trap and the actual analysis trap. The purpose of the co-magnetometer trap is to continuously monitor the magnetic field. The analysis trap is surrounded by an extremely large magnetic field inhomogeneity of 300 Kilotesla per square meter.

This ultra-powerful magnetic field inhomogeneity is a fundamental requirement for detecting spin-flips, a method developed by Nobel Prize laureate Hans Georg Dehmelt in 1987 for measuring the magnetic moment of the electron and the positron. "However, the challenge in our case is much greater because the magnetic moment of the proton and the antiproton is about 660 times smaller in comparison," wrote the BASE scientists in a paper published in Nature Communications.

The principle used to measure the magnetic moment of single protons was developed five years ago by a collaboration with a group at the Institute of Physics at Johannes Gutenberg University Mainz led by Professor Jochen Walz. With its high-precision measurement of the proton in 2014 the collaboration goes unchallenged as the top research team in this field.

G-factor measured with six times enhanced accuracy
The method used to analyze the antiproton employs the same principle. The g-factor was determined on the basis of six individual measurements with an uncertainty of just 0.8 parts per million. The value of 2.7928465(23) is six times more precise than the previous record achieved by another CERN research group in 2013. As recently as 2011, the magnetic moment of the antiproton was only known to an accuracy of three decimal places.

The new result is consistent with the g-factor of the proton as measured in Mainz in 2014, namely 2.792847350(9). "This means that within our experimental uncertainty, we cannot detect any difference between protons and antiprotons. At this level our measurement is consistent with the predictions of the Standard Model," stated Stefan Ulmer, coordinator of BASE at CERN and a former member of Walz' team at Mainz University.

Protons and antiprotons thus still appear to be mirror images of each other, meaning there is still no explanation of why matter actually exists at all and did not simply vaporize in the first moments of the Big Bang. The BASE collaboration intends to go a step further by increasing the precision of its measurements using a double Penning trap technique. This is a complex technique that was used for the Mainz proton measurements in 2014 and offers the potential of improving accuracy by a factor of 1,000.

"The asymmetry between matter and antimatter is so obvious that something must have happened which cannot yet be detected using the methods currently available to modern physics. So our main aim is to find approaches that can help solve this extraordinary puzzle," said Ulmer of the group's future plans.

In addition to Johannes Gutenberg University Mainz, the other members involved in the research projects are the RIKEN research center in Japan, the Max Planck Institute for Nuclear Physics in Heidelberg, the Leibniz Universitat Hannover and the GSI Helmholtz Center for Heavy Ion Research in Darmstadt.

Research paper



Traffic jam in empty space

‎Tuesday, ‎January ‎31, ‎2017, ‏‎11:47:00 AMGo to full article
Konstanz, Germany (SPX) Jan 20, 2017 - With these results, the researchers from the field of ultrafast phenomena and photonics build on their earlier findings, published in October 2015 in the scientific journal Science, where they have demonstrated direct detection of signals from pure nothingness.

This essential scientific progress might make it possible to solve problems that physicists have grappled with for a long time, ranging from a deeper understanding of the quantum nature of radiation to research on attractive material properties such as high-temperature superconductivity. The new results are published on 19 January 2017 in the current online issue of the scientific journal Nature: DOI: 10.1038/nature21024.

A world-leading optical measurement technique, developed by Alfred Leitenstorfer's team, made this fundamental insight possible. A special laser system generates ultrashort light pulses that last only a few femtoseconds and are thus shorter than half a cycle of light in the investigated spectral range. One femtosecond corresponds to the millionth of a billionth of a second.

The extreme sensitivity of the method enables detection of electromagnetic fluctuations even in the absence of intensity, that is, in complete darkness. Theoretically, the existence of these "vacuum fluctuations" follows from Heisenberg's Uncertainty Principle. Alfred Leitenstorfer and his team succeeded in directly observing these fluctuations for the first time and in the mid-infrared frequency range, where even conventional approaches to quantum physics have not worked previously.

The conceptual novelty of the experiments is that instead of the frequency-domain techniques used so far, the physicists from Konstanz accessed quantum statistics of light directly in the time domain. At a chosen point in time, electric field amplitudes are directly measured instead of analysing light in a narrow frequency band.

Studying different points in time results in characteristic noise patterns that allow for detailed conclusions about the temporal quantum state of light. As the laser pulse propagates together with the quantum field under study, the Konstanz physicists can, so to speak, bring time to a stop. Ultimately, space and time, that is "space-time", behave absolutely equivalently in these experiments - an indication of the inherently relativistic nature of electromagnetic radiation.

As the new measurement technique neither has to absorb the photons to be measured nor amplify them, it is possible to directly detect the electromagnetic background noise of the vacuum and thus also the controlled deviations from this ground state, created by the researchers. "We can analyse quantum states without changing them in the first approximation", says Alfred Leitenstorfer. The high stability of the Konstanz technology is an important factor for the quantum measurements, as the background noise of their ultrashort laser pulses is extremely low.

By manipulating the vacuum with strongly focused femtosecond pulses, the researchers come up with a new strategy to generate "squeezed light", a highly nonclassical state of a radiation field. The speed of light in a certain segment of space-time is deliberately changed with an intense pulse of the femtosecond laser.

This local modulation of the velocity of propagation "squeezes" the vacuum field, which is tantamount to a redistribution of vacuum fluctuations. Alfred Leitenstorfer compares this mechanism of quantum physics graphically with a traffic jam on the motorway: from a certain point on, some cars are going slower. As a result, traffic congestion sets in behind these cars, while the traffic density will decrease in front of that point. That means: when fluctuation amplitudes decrease in one place, they increase in another.

While the fluctuation amplitudes positively deviate from the vacuum noise at temporally increasing speed of light, a slowing down results in an astonishing phenomenon: the level of measured noise is lower than in the vacuum state - that is, the ground state of empty space.

The simple illustration with the traffic on a motorway, however, quickly reaches its limits: in contrast to this "classical physics" picture, where the number of cars remains constant, the noise amplitudes change completely differently with increasing acceleration and deceleration of space-time. In case of a moderate "squeezing", the noise pattern is distributed around the vacuum level fairly symmetrically.

With increasing intensity, however, the decrease inevitably saturates toward zero. The excess noise that is accumulated a few femtoseconds later, in contrast, increases non-linearly - a direct consequence of the Uncertainty Principle's character as an algebraic product. This phenomenon can be equated with the generation of a highly nonclassical state of the light field, in which, for example, always two photons emerge simultaneously in the same volume of space and time.

The experiment conducted in Konstanz raises numerous new questions and promises exciting studies to come. Next, the physicists aim at understanding the fundamental limits of their sensitive detection method which leaves the quantum state seemingly intact. In principle, every experimental analysis of a quantum system would ultimately perturb its state.

Currently, still a high number of individual measurements needs to be performed in order to obtain a result: 20 million repetitions per second. The physicists can not yet say with certainty whether it is a so-called "weak measurement" in conventional terms of quantum theory.

The new experimental approach to quantum electrodynamics is only the third method to study the quantum state of light. Now fundamental questions arise: What exactly is the quantum character of light? What actually is a photon? Concerning the last question, that much is clear to the Konstanz physicists: instead of a quantized packet of energy it is rather a measure for the local quantum statistics of electromagnetic fields in space-time.

Research paper: C. Riek, P. Sulzer, M. Seeger, A.S. Moskalenko, G. Burkard, D.V. Seletskiy, A. Leitenstorfer: "Subcycle Quantum Electrodynamics". Nature, Advance online publication. DOI: 10.1038/nature21024



Light source discovery 'challenges basic assumption' of physics

‎Tuesday, ‎January ‎31, ‎2017, ‏‎11:47:00 AMGo to full article
Strathclyde, UK (SPX) Jan 18, 2017 - A widely-held understanding of electromagnetic radiation has been challenged in newly published research led at the University of Strathclyde. The study found that the normal direct correspondence between the bandwidths of the current source and emitted radiation can be broken. This was achieved by extracting narrowband radiation with high efficiency, without making the oscillation of the current narrowband.

The finding produced narrowband light sources in media where electromagnetic radiation would not normally be possible. It makes for a powerful tool for scientists that enables them to understand the intricacies of how materials, or even biological molecules, behave under different conditions, which has a major impact on people's lives through the development of new products and medical treatments.

The research, published in Scientific Reports, also involved researchers at the Ulsan National Institute of Science and Technology (UNIST) and the Gwangju Institute of Science and Technology (GIST), both in South Korea.

Professor Dino Jaroszynski, of Strathclyde's Department of Physics, led the study. He said: "Coherent light sources such as lasers have many uses, from communication to probing the structure of matter. The simplest source of coherent electromagnetic radiation is an oscillating electric current in an antenna. However, there are many other devices are based on these basic laws of physics, such as the free-electron laser, which produces coherent X-ray radiation, or magnetrons found in microwave ovens.

"Our study has shown that some common media with interesting optical properties can be taken advantage of if we imbed, or bury, an oscillating current source in them. Media such as plasma, semiconductors and photonic structures have a 'cut-off', where propagation of electromagnetic radiation with frequencies lower than the 'cut-off' frequency is not possible; we noticed that the radiation impedance is increased at the cut-off.

"One consequence of this is that, for a broadband current source immersed in this type of dispersive medium, the cut-off frequency 'mode' is selectively enhanced due to Ohm's law, resulting in narrow bandwidth emission. What is curious is that novel physics should still be hidden in the classical cut-off behaviour; in our research, we uncovered a hidden face of the cut-off and realised a new paradigm of narrowband light sources in media that would not usually allow electromagnetic radiation to propagate. This is a remarkably simple idea based on straightforward physics theory that seems to have been overlooked.

"This is a very exciting theoretical discovery that comes out of a very fruitful cross-continental collaboration. It shows that we should always keep an open mind and question even very basic assumptions. We hope to demonstrate this phenomenon at the Strathclyde-based Scottish Centre for the Application of Plasma-based Accelerators; there are numerous applications of electromagnetic radiation and the proposed source should have a large impact if we are able to demonstrate it experimentally."

Professor Min Sup Hur at UNIST, Republic of South Korea, who leads the work from UNIST, said: "This new discovery is scientifically interesting, because it leads us to see the phenomenon of electromagnetic radiation from a completely different viewpoint. We hope the fruitful international collaboration, which brought us to this theoretical discovery, will continue with the experimental demonstration of the idea."

Modern light sources, or, more generally, electromagnetic sources used as scientific tools require good coherency, monochromaticity, and high emission power. Coherency and narrow bandwidth - or monochromaticity - are important properties of electromagnetic radiation that allow it to be used to observe changes in the structure of materials subject to stimuli, such as a short intense laser pulse; material properties are deduced from changes that are made apparent in pump-probe studies. An analogy would be to making a movie by assembling many time lapse snapshots to animate the changes that are occurring in the material after it has been stimulated.

The main challenge is making high power sources of electromagnetic radiation monochromatic. This is often done by making the oscillating current narrowband or filtering the spectrum, which is extremely inefficient. It is complicated, and can be expensive, to reduce the bandwidth of a current source while maintaining or increasing its radiated power.

Research paper



LIGO expected to detect more binary black hole mergers

‎Tuesday, ‎January ‎10, ‎2017, ‏‎3:26:32 AMGo to full article
Los Angeles CA (SPX) Jan 10, 2017 - The Laser Interferometer Gravitational-wave Observatory (LIGO) broke the news almost one year ago when the first-ever direct observation of gravitational waves was announced. Now LIGO scientists hope that this year could yield even more breakthrough findings in astronomy.

On November 30, LIGO resumed its search for gravitational waves when it was switched from engineering test runs to science observations after a series of upgrades. One of LIGO's observatories, located in Livingston, Louisiana, has now about a 25 percent greater sensitivity for detecting gravitational waves from binary black holes than earlier what allows it to spot black hole mergers at further distances than before.

"We began LIGO's second observing run (called "O2") on November 30, 2016. O2 is planned to continue for approximately six months until the late spring or early summer of 2017. After it ends, we will enter another period of detector commissioning where we will work to improve the Hanford and Livingston detectors' sensitivities through the end of 2017.

It's also possible that the Virgo interferometer (located near Pisa, Italy) will come online and join LIGO sometime in the next few months, which will bring an added capability to our ability to detect and locate gravitational wave sources," David Reitze of the California Institute of Technology (Caltech) told Astrowatch.net.

Reitze is the executive director of the LIGO Laboratory, which operates the LIGO Observatories. Caltech and the Massachusetts Institute of Technology (MIT) conceived of, built, and operate the LIGO Observatories, with funding provided by the National Science Foundation (NSF).

LIGO scientists hope that with more detections of more black hole mergers, our understanding of black hole pairs in the universe will significantly improve. This, together with possible new observations of mergers of neutron stars could provide important insights on stellar evolution and death.

"It is likely, but not guaranteed, that we will detect more binary black hole mergers during the O2 run. Binary neutron star mergers or a neutron star merging with a black hole would be a new and thus more significant discovery, however the rates for these events are much less certain, so we can not say with any confidence when we will first see them," Reitze said.

He added that the astronomical community is greatly interested in LIGO events, because a gravitational wave source may also emit electromagnetic radiation - gamma rays, x-rays, optical, infrared, and even radio frequencies. This would be true for binary neutron star collisions, neutron star - black hole mergers, and supernovae.

"Astronomers have already searched for electromagnetic emissions from the first LIGO detections, and will continue in O2. We hope that LIGO will become increasingly important as time goes on and we make more discoveries of electromagnetically bright events," Reitze concluded.



Deepest X-ray image ever reveals black hole treasure trove

‎Tuesday, ‎January ‎10, ‎2017, ‏‎3:26:32 AMGo to full article
University Park PA (SPX) Jan 06, 2017 - An unparalleled image from NASA's Chandra X-ray Observatory is giving an international team of astronomers the best look yet at the growth of black holes over billions of years beginning soon after the Big Bang. This is the deepest X-ray image ever obtained, collected with about 7 million seconds, or 11 and a half weeks, of Chandra observing time.

The image comes from what is known as the Chandra Deep Field-South. The central region of the image contains the highest concentration of supermassive black holes ever seen, equivalent to about 5,000 objects that would fit into the area of the full Moon and about a billion over the entire sky.

"With this one amazing picture, we can explore the earliest days of black holes in the Universe and see how they change over billions of years," said Niel Brandt, the Verne M. Willaman Professor of Astronomy and Astrophysics, and professor of physics, Penn State, who led a team of astronomers studying the deep image.

About 70 percent of the objects in the new image are supermassive black holes, which may range in mass from about 100,000 to 10 billion times the mass of the Sun. Gas falling towards these black holes becomes much hotter as it approaches the event horizon, or point of no return, producing bright X-ray emission.

"It can be very difficult to detect black holes in the early Universe because they are so far away and they only produce radiation if they're actively pulling in matter," said team member Bin Luo, professor of astronomy and space science, Nanjing University. "But by staring long enough with Chandra, we can find and study large numbers of growing black holes, some of which appear not long after the Big Bang."

The new ultra-deep X-ray image allows scientists to explore ideas about how supermassive black holes grew about one to two billion years after the Big Bang. Using these data, the researchers showed that these black holes in the early Universe grow mostly in bursts, rather than via the slow accumulation of matter.

The researchers also have found hints that the seeds for supermassive black holes may be "heavy" with masses about 10,000 to 100,000 times that of the Sun, rather than light seeds with about 100 times the Sun's mass. This addresses an important mystery in astrophysics about how these objects can grow so quickly to reach masses of about a billion times the Sun in the early Universe.

They also have detected X-rays from massive galaxies at distances up to about 12.5 billion light years from Earth. Most of the X-ray emission from the most distant galaxies likely comes from large collections of stellar-mass black holes within the galaxies. These black holes are formed from the collapse of massive stars and typically weigh a few to a few dozen times the mass of the Sun.

"By detecting X-rays from such distant galaxies, we're learning more about the formation and evolution of stellar-mass and supermassive black holes in the early Universe," said team member Fabio Vito, postdoctoral scholar in astronomy and astrophysics, Penn State. "We're looking back to times when black holes were in crucial phases of growth, similar to hungry infants and adolescents."

To perform this study, the team combined the Chandra X-ray data with very deep Hubble Space Telescope data over the same patch of sky. They studied X-ray emission from over 2,000 galaxies identified by Hubble that are located between about 12 and 13 billion light years from Earth.

Further work using Chandra and future X-ray observatories will be needed to provide a definite solution to the mystery of how supermassive black holes can quickly reach large masses. A larger sample of distant galaxies will come from observations with the James Webb Space Telescope, extending the study of X-ray emission from black holes out to even greater distances from Earth.

The researchers presented their results this week (Jan. 5) at the 229th meeting of the American Astronomical Society meeting in Grapevine, Texas. A paper on black hole growth in the early Universe, led by Fabio Vito, was published in the Aug. 10, 2016, issue of the Monthly Notices of the Royal Astronomical Society. A survey paper led by Bin Luo was recently accepted for publication in The Astrophysical Journal Supplement Series.

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

Penn State and MIT, under the leadership of Gordon Garmire, Evan Pugh Professor Emeritus of Astronomy, Penn State, developed the ACIS instrument for NASA.



Arecibo Observatory Casts New Light on Cosmic Microwave Background

‎Tuesday, ‎January ‎10, ‎2017, ‏‎3:26:32 AMGo to full article
Columbia MA (SPX) Jan 05, 2017 - Arecibo Observatory observations of galactic neutral hydrogen structure confirm the discovery of an unexpected contribution to the measurements of the cosmic microwave background observed by the WMAP and Planck spacecraft.

An accurate understanding of the foreground (galactic) sources of radiation observed by these two spacecraft is essential for extracting information about the small-scale structure in the cosmic microwave background believed to be indicative of events in the early universe.

The new source of radiation in the 22 to 100 GHz range observed by WMAP and Planck appears to be emission from cold electrons (known as free-free emission). While cosmologists have corrected for this type of radiation from hot electrons associated with galactic nebulae where the source temperatures are thousands of degrees, the new model requires electron temperatures more like a few 100 K.

The spectrum of the small-scale features observed by WMAP and Planck in this frequency range is very nearly flat - a finding consistent with the sources being associated with the Big Bang. At first glance it appears that the spectrum expected from the emission by cold galactic electrons, which exist throughout interstellar space, would be far too steep to fit the data.

However, if the sources of emission have a small angular size compared with the beam width used in the WMAP and Planck spacecraft, the signals they record would be diluted. The beam widths increase with lower frequency, and the net result of this "beam dilution" is to produce an apparently flat spectrum in the 22 to 100 GHz range.

"It was the beam dilution that was the key insight," noted Dr. Gerrit Verschuur, astronomer emeritus at the Arecibo Observatory and lead author on the paper. "Emission from an unresolved source could mimic the flat spectrum observed by WMAP and Planck."

The model invoking the emission from cold electrons not only gives the observed flat spectrum usually attributed to cosmic sources but also predicts values for the angular scale and temperature for the emitting volumes. Those predictions can then be compared with observations of galactic structure revealed in the Galactic Arecibo L-Band Feed Array (GALFA) HI survey.

"The interstellar medium is much more surprising and important than we have given it credit for," noted Dr. Joshua Peek, an astronomer at the Space Telescope Science Institute and a co-investigator on the GALFA-HI survey. "Arecibo, with its combination of large area and high resolution, remains a spectacular and cutting edge tool for comparing ISM maps to cosmological data sets."

The angular scales of the smallest features observed in neutral hydrogen maps made at Arecibo and the temperature of the apparently associated gas both match the model calculations extremely well. So far only three well-studied areas have been analyzed in such detail, but more work is being planned.

"It was the agreement between the model predictions and the GALFA-HI observations that convinced me that we might be onto something," noted Dr. Joan Schmelz, Director, Universities Space Research Association (USRA) at Arecibo Observatory and a coauthor on the paper. "We hope that these results help us understand the true cosmological nature of Planck and WMAP data."

The data suggest that the structure and physics of diffuse interstellar matter, in particular of cold hydrogen gas and associated electrons, may be more complex than heretofore considered.

Such complexities need to be taken into account in order to produce better foreground masks for application to the high-frequency continuum observations of Planck and WMAP in the quest for a cosmologically significant signal.

USRA's Dr. Joan Schmelz will present these findings on January 4, 2017, at a press conference at the American Astronomical Society's (AAS) meeting at Grapevine, Texas.

Research paper: "On the Nature of Small-Scale Structure in the Cosmic Microwave Background Observed by Planck and WMAP," G. L. Verschuur and J. T. Schmelz, 2016 Dec. 1, Astrophysical Journal



Venerable Radio Telescope Sets Standard for Universal Constant

‎Tuesday, ‎January ‎10, ‎2017, ‏‎3:26:32 AMGo to full article
Columbia MA (SPX) Jan 05, 2017 - About 150 hours of observing time on the 1,000-ft radio telescope at the Arecibo Observatory in Puerto Rico over the course of the last several years have been devoted to determining whether the most fundamental constant in physics really is constant.

The target is the so-called fine structure constant, usually known as alpha, which describes the electromagnetic interaction between elementary charged particles. Its value is crucial to understanding the nature of atomic spectra, which in turn allows astronomers to measure the radial velocity of galaxies from which these spectral lines are observed.

Such observations led to the discovery that galaxies appear to be receding from one another with velocities that increase with the distance between them. This is a manifestation of the expansion of the universe following the Big Bang.

Our current model for the expansion and acceleration of the universe depends on the assumption that neither alpha nor mu, the proton-to-electron mass ratio, have changed with time. This assumption is key to our current understanding of the age of the universe. But what if alpha does change with time? Then our knowledge of the distance between galaxies or the age of the universe would have to be revised.

The Arecibo telescope has recently been used to set a new limit on how constant things are. While the latest data suggest that there may be a small change in alpha, it is still too early to be sure. With an uncertainty on the measurement of about one part in a million, it is not yet time to celebrate, nor to heave a sigh of relief.

The Arecibo observations have been carried out by Nissim Kanekar and Jayaram Chengalur of the National Center for Radio Astrophysics in India, and Tapasi Ghosh, a Universities Space Research Association (USRA) astronomer at the Arecibo Observatory. Their experiment makes use of a marvelous concordance of cosmic circumstances involving quasar PKS 1413+135, which is located about 3 billion light-years away. In front of that quasar, and probably surrounding its radio-bright nucleus, is a cloud of OH molecules (OH is also known as hydroxyl).

The atomic properties of hydroxyl are extremely well known from laboratory and theoretical studies. The OH cloud in the Arecibo experiment is observed in two spectral lines, one at 1612 MHz and the other at 1720 MHz. What is unusual is that one of the lines (1612) is seen in absorption and the other (1720) in emission. These lines are said to be conjugate, that is, they are mirror images of one another, which assures that they originate from the same gas cloud.

This is a crucial factor in reducing systematic uncertainties in the measurement of alpha. From the Arecibo spectra, we can measure the observed frequency difference between the two lines and compare that with the laboratory results. Because this quasar is seen as it was 3 billion years in the past and our laboratory is in the present, we can determine just how truly constant alpha is over time.

The 150-hour integration at Arecibo allows the two spectral lines to be compared with very high accuracy. The result implies that alpha has not changed by more than 1.3 parts in a million, in these 3 billion years.

To make the measurements even more accurate would require either more telescope time or the good fortune to find a more distant quasar with a similar OH cloud in its neighborhood. For example, to improve the accuracy by a factor of 10 would require 100 times more observing time than has already been devoted to the project. That is not a realistic possibility.

"We are hopeful that current searches for more quasar candidates showing the necessary OH lines will be successful," noted Dr. Tapasi Ghosh. "These could provide even tighter constraints on any possible variations of this atomic constant."

Until then, the Arecibo measurement is the new gold standard in defining how certain we are that a key physical constant - a constant that sets the very size and scale of the universe - is truly constant.

USRA's Dr. Tapasi Ghosh is presenting these findings at a press briefing at the American Astronomical Society's meeting in Grapevine, Texas, on January 4, 2017.



Arecibo Data Crucial to Understanding Quasars' Brightness

‎Tuesday, ‎January ‎10, ‎2017, ‏‎3:26:32 AMGo to full article
Columbia MA (SPX) Jan 05, 2017 - Remarkable new observations derived by linking Arecibo Observatory's 305-meter dish with the Russian RadioAstron space radio telescope have provided results that are causing much head scratching in radio astronomical circles. What used to be a well-understood explanation of the mechanism that generates intense radio signals from tiny and very distant quasar nuclei has now been tested in previously impossible ways.

The RadioAstron satellite, launched in 2011 by the Russian Federal Space Agency, carries a 10-m radio dish and is traveling around the Earth in a highly elliptical orbit that takes it out to 350,000 km from Earth - almost the distance to the Moon.

When the signals it receives from a distant quasar are combined with simultaneous data acquired by its Earth-based partners at Arecibo in Puerto Rico, Green Bank in West Virginia, Socorro in New Mexico, and Bonn in Germany, the observations simulate a dish up to 350,000 km in diameter. This network of telescopes operates at frequencies (wavelengths) of 330 MHz (92 cm), 1.7 GHz (18 cm), 4.7 GHz (6.2 cm) and 22 GHz (1.3 cm).

"Arecibo's huge diameter helps compensate for the small size of the RadioAstron dish," commented Dr. Chris Salter, Universities Space Research Association's (USRA) senior staff astronomer at Arecibo Observatory. "Arecibo's participation is critical to the success of many RadioAstron experiments."

Combining the signals produces what are called fringes, and it was recently reported that quasar 3C 273 was detected at a baseline of 170,000 km (106,000 miles). This remarkable achievement showed that 3C 273 has structure in its core at least as small as 26 microarcseconds across.

At the distance of 3C 273, this corresponds to a physical diameter of 2.7 light-months. The ability to see such detail is not matched by any other telescope in the world. Optical telescopes, even the Hubble Space Telescope, do not come anywhere near this ability to see detailed structure.

To relate this angular scale to human experience, it is as if you were able to see a golf ball (which is not quite 5 cm across) on the Moon. Or if a spy satellite were in geosynchronous orbit, it would be able to see details as small as a fingernail.

So far RadioAstron and its terrestrial partners have not detected details smaller than the 26 microarcseconds in 3C 273's core, but already the observations are pushing the theory of radio source emission mechanisms beyond their limit.

Radio astronomers measure the apparent brightness of objects such as quasars in terms of the temperature a solid body subtending the same angular size would have to possess in order to shine with the same intensity. The smaller the angular diameter of the object producing the radio signals, the higher its source temperature must be to produce the observed signal.

The 3C 273 data reveal that its brightness temperature must be about 4 x 10^13 K, that is, a 4 followed by 13 zeroes, or 40 trillion degrees. The problem is that the maximum allowed by present theories for radio emission from a quasar is about 10^12 K, which is to say around one trillion degrees Celsius.

"Temperatures this high test our understanding of the physics in the vicinity of supermassive black hole at the heart of 3C 273," noted Dr. Tapasi Ghosh, the VLBI staff astronomer at Arecibo Observatory. "We hope that Arecibo-RadioAstron observations of other sources will help shed light on this mystery."

As the 20 authors of the most recent paper, led by Dr. Yuri Kovalev of the Lebedev Physical Institute in Moscow, state, "We conclude that it is difficult to interpret the data in terms of conventional incoherent synchrotron radiation." Yet the theory of quasar radio emission that has held sway for nearly 60 years is based on synchrotron radiation.

"Arecibo Observatory may have celebrated its 50th anniversary in 2013, but it continues to make vital observations that challenge our understanding," said USRA's Dr. Joan Schmelz, Director, Arecibo Operations at Arecibo Observatory. "These impressive contributions to the RadioAstron measurements are just one example."

The RadioAstron project is led by the Astro Space Center of the Lebedev Physical Institute of the Russian Academy of Science and the Lavochkin Association of the Russian Space Agency. Scientists at partner institutions in Russia and elsewhere in the world, including Puerto Rico, West Virginia, Massachusetts, New Mexico, Virginia, Germany, the Netherlands and Australia, collaborate to make RadioAstron the international success that it has turned out to be.

Crucial to that success has been the availability of the huge collecting area that is provided by the 305-m diameter dish at Arecibo, Puerto Rico, without which the effectiveness of the small RadioAstron antenna would be vastly reduced.

Two of USRA's permanent staff at Arecibo, Drs. C. J. Salter and T. Ghosh, who carry out the on-site observations, are deeply involved in furthering the aims of the project to determine what makes distant source of radio shine as brightly as they do.

Dr. Chris Salter of Universities Space Research Association is presenting these results at a press conference at the American Astronomical Society's meeting in Grapevine, Texas, on January 4, 2017.

Research paper: "RadioAstron Observations of the Quasar 3C 273: A Challenge to the Brightness Temperature Limit," Y. Y. Kovalev et al., 2016 Mar. 20, Astrophysical Journal Letters



Investigations of the skyrmion Hall effect reveal surprising results

‎Tuesday, ‎January ‎10, ‎2017, ‏‎3:26:32 AMGo to full article
Mainz, Germany (SPX) Jan 03, 2017 - Researchers at Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) have made another important breakthrough in the field of future magnetic storage devices. Already in March 2016, the international team investigated structures, which could serve as magnetic shift register or racetrack memory devices.

This type of storage promises low access times, high information density, and low energy consumption. Now, the research team achieved the billion-fold reproducible motion of special magnetic textures, so-called skyrmions, between different positions, which is exactly the process needed in magnetic shift registers thereby taking a critical step towards the application of skyrmions in devices. The work was published in the research journal Nature Physics.

The experiments were carried out in specially designed thin film structures, i.e., vertically asymmetric multilayer devices exhibiting broken inversion symmetry and thus stabilizing special spin structures called skyrmions.

Those structures are similar to a hair whorl and like these are relatively difficult to destroy. This grants them unique stability, which is another argument for the application of skyrmions in such spintronic devices.

Since skyrmions can be shifted by electrical currents and feel a repulsive force from the edges of the magnetic track as well as from single defects in the wire, they can move relatively undisturbed through the track. This is a highly desired property for racetrack devices, which are supposed to consist of static read- and write-heads, while the magnetic bits are shifted in the track.

However, it is another important aspect of skyrmion dynamics that the skyrmions do not only move parallel to the applied current, but also perpendicular to it. This leads to an angle between the skyrmion direction of motion and the current flow called the skyrmion Hall angle, which can be predicted theoretically.

As a result, the skyrmions should move under this constant angle until they start getting repelled by the edge of the material and then keep a constant distance to it.

Within their latest research project, scientists of JGU and MIT now proved that the billion-fold reproducible displacement of skyrmions is indeed possible and can be achieved with high velocities.

Furthermore, the skyrmion Hall angle was investigated in detail. Surprisingly, it turned out to be dependent on the velocity of the skyrmions, which means that the components of the motion parallel and perpendicular to the current flow do not scale equally with the velocity of the skyrmions.

This is not predicted in the conventional theoretical description of skyrmions. Part of the solution of this unexpected behavior could be the deformation of the skyrmion spin structure, calling for more theoretical effort to fully understand the properties of skyrmions.

"I am glad that the collaboration between Mainz University and MIT has already yielded the second high-ranked publication. Considering especially the short time since the collaboration started, this is exceptional and I am happy to be able to participate in it," said Kai Litzius, first-author of the Nature Physics article. Litzius is a scholar of the Graduate School of Excellence "Materials Science in Mainz" (MAINZ) and a member of the team headed by Professor Mathias Klaui.

"In highly competitive fields of research such as that on skyrmions, international cooperation with leading groups is a strategical advantage. Within only two years after the start of the collaboration with our colleagues from MIT, we have already published the second time together in a high-ranked Nature group journal.

The MAINZ Graduate School of Excellence facilitates research stays of PhD students from the United States in Mainz and vice versa and therefore contributes significantly to international education and successful research in this field," emphasized Professor Mathias Klaui of the JGU Institute of Physics, who is also Director of MAINZ.

Research paper



First experimental proof of a 70 year old physics theory

‎Tuesday, ‎January ‎10, ‎2017, ‏‎3:26:32 AMGo to full article
Seoul, South Korea (SPX) Jan 04, 2017 - PARK Je-Geun, Associate Director at the Center for Correlated Electron Systems, within the Institute for Basic Science (IBS), working in collaboration with CHEONG Hyeonsik at Sogang University and PARK Cheol-Hwan at Seoul National University demonstrated the magnetic behavior of a special class of 2D materials. This is the first experimental proof to a theory proposed more than 70 years ago. The paper, describing the experiment, is published in the journal Nano Letters.

Recently, scientists all over the world are investigating the properties and applications of extremely thin 2D materials, just one-atom-thick, like graphene. Studying the properties of 2D materials in comparison with their 3D counterparts raises many thought-provoking questions; one of them concerns magnetic phase transitions.

Some materials are magnetic because of the behavior of the spins of their electrons. In simple terms, spins (spin quantum numbers, or more precisely their associated magnetic moments), are just like tiny magnets, conventionally shown as arrows. At extremely low temperatures, these spins tend to align, lowering the electrons' total energy.

However, above a specific temperature that varies from material to material, spins lose their alignment and become randomly oriented. Similar to how ice loses its internal order and becomes liquid above a certain temperature; 3D magnets also lose their magnetization above a critical temperature. This is called phase transition and is an ever-present process in 3D objects.

However, what happens to 1D and 2D systems at low temperatures? Do they experience a phase transition? In other words, are we going to see a transition from solid to liquid in a chain of water molecules (1D) or in a one-atom thick sheet of water (2D)?

About one century ago, the physicist Wilhelm Lenz asked his student Ernst Ising to solve this problem for 1D systems. Ising explained it in 1925 and concluded that 1D materials do not have phase transitions. Then, Ising tried to grapple with the same question for a particular type of 2D materials. The problem turned out to be much harder.

The solution came in 1943 courtesy of Lars Onsager, who received the Nobel Prize for Chemistry in 1968. Indeed, Onsager found that the materials, which follow the Ising spin model, have a phase transition.

However, despite the huge importance this theory has in the following development of the whole physics of phase transitions, it has never been tested experimentally using a real magnetic material. "The physics of 2D systems is unique and exciting. The Onsager solution is taught on every advanced statistical mechanics course. That's where I learned this problem.

However, when I discovered much later that it has not been tested experimentally with a magnetic material, I thought it was a shame for experimentalists like me, so it was natural for me to look for a real material to test it," explains PARK Je-Geun.

In order to prove the Onsager model, the research team produced crystals of iron trithiohypophosphate (FePS3) with a technique called chemical vapour transport. The crystals are made of layers bound by weak interactions, known as Van der Waals interactions. Layers can be peeled off from the crystal by using scotch tape, in the same way tape can strip paint from a wall.

The scientists peeled the layers until they were left with just one layer of FePS3 (2D). "We can call these materials magnetic Van der Waals materials or magnetic graphene: they are magnetic and they have easy-to-cleave Van der Waals bonds between layers. They are very rare, and their physics is still unexplored," says the professor.

While there are several methods to measure the magnetic properties of bulk 3D materials, these techniques have no practical use to measure magnetic signals coming from monolayer materials. Therefore, the team used Raman spectroscopy, a technique normally used to measure vibrations inside the material. They used vibrations as an indirect measure of magnetism, the more vibrations, the less magnetization.

Park's team and colleagues first used Raman spectroscopy on bulk 3D FePS3 material at different temperatures and then tested FePS3 2D monolayer. "The test with the bulk sample showed us that the Raman signals can be used as a kind of the fingerprint of phase transition at temperatures around 118 Kelvin, or minus 155 degrees Celsius.

With this confirmation we then measured the monolayer sample and found the same patterns," points out Park. "We conclude that 3D and 2D FePS3 have the same signature of the phase transition visible in the Raman spectrum."

Both in the bulk sample and the monolayer, FePS3' spins are ordered (antiferromagnetic) at very low temperatures, and become disordered (paramagnetic) above 118 degrees Kelvin. "Showing magnetic phase transition with this tour-de-force experiment is a beautiful test for the Onsager solution," concludes the physicist.

In the future, the team would like to study other 2D transition metal materials, going beyond the 2D Ising spin model.

Research paper



NASA selects mission to study black holes, cosmic x-ray mysteries

‎Tuesday, ‎January ‎10, ‎2017, ‏‎3:26:32 AMGo to full article
Washington DC (SPX) Jan 04, 2017 - NASA has selected a science mission that will allow astronomers to explore, for the first time, the hidden details of some of the most extreme and exotic astronomical objects, such as stellar and supermassive black holes, neutron stars and pulsars.

Objects such as black holes can heat surrounding gases to more than a million degrees. The high-energy X-ray radiation from this gas can be polarized - vibrating in a particular direction.

The Imaging X-ray Polarimetry Explorer (IXPE) mission will fly three space telescopes with cameras capable of measuring the polarization of these cosmic X-rays, allowing scientists to answer fundamental questions about these turbulent and extreme environments where gravitational, electric and magnetic fields are at their limits.

"We cannot directly image what's going on near objects like black holes and neutron stars, but studying the polarization of X-rays emitted from their surrounding environments reveals the physics of these enigmatic objects," said Paul Hertz, astrophysics division director for the Science Mission Directorate at NASA Headquarters in Washington.

"NASA has a great history of launching observatories in the Astrophysics Explorers Program with new and unique observational capabilities. IXPE will open a new window on the universe for astronomers to peer through. Today, we can only guess what we will find."

NASA's Astrophysics Explorers Program requested proposals for new missions in September 2014. Fourteen proposals were submitted, and three mission concepts were selected for additional review by a panel of agency and external scientists. NASA determined the IXPE proposal provided the best science potential and most feasible development plan.

The mission, slated for launch in 2020, will cost $188 million. This figure includes the cost of the launch vehicle and post-launch operations and data analysis. Principal Investigator Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Alabama, will lead the mission.

Ball Aerospace in Broomfield, Colorado, will provide the spacecraft and mission integration. The Italian Space Agency will contribute the polarization sensitive X-ray detectors, which were developed in Italy.



The sound of quantum vacuum

‎Tuesday, ‎January ‎10, ‎2017, ‏‎3:26:32 AMGo to full article
Copenhagen, Denmark (SPX) Jan 03, 2017 - Quantum mechanics dictates sensitivity limits in the measurements of displacement, velocity and acceleration. A recent experiment at the Niels Bohr Institute probes these limits, analyzing how quantum fluctuations set a sensor membrane into motion in the process of a measurement. The membrane is an accurate model for future ultraprecise quantum sensors, whose complex nature may even hold the key to overcome fundamental quantum limits. The results are published in the prestigious scientific journal, Proceedings of the National Academy of Sciences of the USA.

Vibrating strings and membranes are at the heart of many musical instruments. Plucking a string excites it to vibrations, at a frequency determined by its length and tension. Apart from the fundamental frequency - corresponding to the musical note - the string also vibrates at higher frequencies. These overtones influence how we perceive the 'sound' of the instrument, and allow us to tell a guitar from a violin. Similarly, beating a drumhead excites vibrations at a number of frequencies simultaneously.

These matters are not different when scaling down, from the half-meter bass drum in a classic orchestra to the half-millimeter-sized membrane studied recently at the Niels Bohr Institute. And yet, some things are not the same at all: using sophisticated optical measurement techniques, a team lead by Professor Albert Schliesser could show that the membrane's vibrations, including all its overtones, follow the strange laws of quantum mechanics. In their experiment, these quantum laws implied that the mere attempt to precisely measure the membrane vibrations sets it into motion. As if looking at a drum already made it hum!

A 'drum' with many tones
Although the membrane investigated by the Niels Bohr Institute team can be seen with bare eyes, the researchers used a laser to accurately track the membrane motion. And this indeed reveals a number of vibration resonances, all of which are simultaneously measured.

Their frequencies are in the Megahertz range, about a thousand times higher than the sound waves we hear, essentially because the membrane is much smaller than a musical instrument. But the analogies carry on: just like a violin sounds different depending on where the string is struck (sul tasto vs sul ponticello), the researchers could tell from the spectrum of overtones at which location their membrane was excited by the laser beam.

Yet, observing the subtle quantum effects that the researchers were most interested in, required a few more tricks. Albert Schliesser explains: "For once, there is the problem of vibrational energy loss, leading to what we call quantum decoherence. Think of it this way: in a violin, you provide a resonance body, which picks up the string vibrations and transforms them to sound waves carried away by the air.

"That's what you hear. We had to achieve exactly the opposite: confine the vibrations to the membrane only, so that we can follow its undisturbed quantum motion for as long as possible. For that we had to develop a special 'body' that cannot vibrate at the membrane's frequencies".

This was achieved by a so-called phononic crystal, a regular pattern of holes that exhibits a phononic bandgap, that is, a band of frequencies at which the structure cannot vibrate. Yeghishe Tsaturyan, a PhD student on the team, realized a membrane with such a special body at the Danchip nanofabrication facilities in Lyngby.

A second challenge consists in making sufficiently precise measurements. Using techniques from the field of Optomechanics, which is Schliesser's expertise, the team created a dedicated experiment at the Niels Bohr Institute, based on a laser custom-built to their needs, and a pair of highly reflecting mirrors between which the membrane is arranged. This allowed them to resolve vibrations with amplitudes much smaller than a proton's radius (1 femtometer).

"Making measurements so sensitive is not easy, in particular since pumps and other lab equipment vibrates with much larger amplitudes. So we have to make sure this doesn't show in our measurement record," adds PhD student William Nielsen.

Vacuum beats the drum
Yet it is exactly the range of ultra-precision measurements where it gets interesting. Then, it starts to matter that, according to quantum mechanics, the process of measuring the motion also influences it. In the experiment, this 'quantum measurement backaction' is caused by the inevitable quantum fluctuations of the laser light.

In the framework of quantum optics, these are caused by quantum fluctuations of the electromagnetic field in empty space (vacuum). Odd as it sounds, this effect left clear signatures in the Niels Bohr Institute experiments' data, namely strong correlations between the quantum fluctuations of the light, and the mechanical motion as measured by light.

"Observing and quantifying these quantum fluctuations is important to better understand how they can affect ultraprecision mechanical measurements - that is, measurements of displacement, velocity or acceleration. And here, the multi-mode nature of the membrane comes into play: not only is it a more accurate representation of real-world sensors. It may also contain the key to overcome some of the traditional quantum limits to measurement precision with more sophisticated schemes, exploiting quantum correlations", Albert

Schliesser says and adds, that in the long run, quantum experiments with ever more complex mechanical objects may also provide an answer to the question why we don't ever observe a bass drum in a quantum superposition (or will we?).

Research Report



JILA atomic clock mimics long-sought synthetic magnetic state

‎Tuesday, ‎January ‎10, ‎2017, ‏‎3:26:32 AMGo to full article
Boulder CO (SPX) Dec 29, 2016 - Using their advanced atomic clock to mimic other desirable quantum systems, JILA physicists have caused atoms in a gas to behave as if they possess unusual magnetic properties long sought in harder-to-study solid materials. Representing a novel "off-label" use for atomic clocks, the research could lead to the creation of new materials for applications such as "spintronic" devices and quantum computers.

JILA's record-setting atomic clock, in which strontium atoms are trapped in a laser grid known as an optical lattice, turns out to be an excellent model for the magnetic behavior of crystalline solids at the atomic scale. Such models are valuable for studying the counterintuitive rules of quantum mechanics.

To create "synthetic" magnetic fields, the JILA team locked together two properties of the clock atoms to create a quantum phenomenon known as spin-orbit coupling. The long lifetime and precision control of the clock atoms enabled researchers to overcome a common problem in other gas-based spin-orbit coupling experiments, namely heating and loss of atoms due to spontaneous changes in atomic states, which interferes with the effects researchers are trying to achieve.

The best-known type of spin-orbit coupling refers to an electron inside a single atom, where an electron's spin (the direction of its momentum, like a tiny arrow pointing up or down) is locked to its orbit around the nucleus to give rise to a rich internal atomic structure.

In the JILA work, spin-orbit coupling locks an atom's spin, which is like a tiny internal bar magnet, with the atom's external motion through the optical lattice. The JILA team precisely manipulated the spin and motion of thousands of strontium atoms in the clock, measured the resulting synthetic magnetic field, and observed key signatures of spin-orbit coupling such as changes in atom motion rippling through the lattice based on their spin.

The experiments are described in a Nature paper published online Dec. 21, 2016. JILA is jointly operated by the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.

"Spin-orbit coupling is useful for studying novel quantum materials," NIST/JILA Fellow Jun Ye said. "By using our atomic clock for quantum simulation, we hope to stimulate new insights and shed new light on emerging behaviors of topological systems that are useful for robust quantum information processing and spintronics."

Spin-orbit coupling is a key feature of topological materials--the subject of theoretical work honored in this year's Nobel Prize in physics--which conduct electricity on the surface but act as insulators on the inside. This characteristic could be used to make novel devices based on electron spin instead of the usual electric charge, and topological quantum computers, which in theory could make powerful calculations in new ways. But real materials like this are hard to make and study--atomic gases are purer and easier to control.

This area of research is fairly new. The first demonstration of spin-orbit coupling in a gas of atoms was achieved in 2011 by a NIST physicist at the Joint Quantum Institute.

The JILA clock has several features that make it a good mimic for crystalline solids. Researchers used lasers to probe the clock "ticks," the atoms' transition between two energy levels. The atoms' behavior then resembled that of electrons in a solid material in the presence of an external magnetic field, where the electrons have two spin states ("spin up" and "spin down"). When an atom was excited to a higher-energy state, the laws of physics required that energy and momentum be conserved, so the atom's momentum slowed.

The end result was a regular pattern of switching back and forth between the atoms' spin and momentum. The pattern occurred across thousands of atoms regularly spaced in the laser grid, or optical lattice, an analogy to the lattice structure of solid crystals. Because the excited atomic state lasted for 160 seconds, the researchers had ample time to make measurements without atom losses or heating.

The use of an atomic clock as a quantum simulator offers the prospect for real-time, nondestructive, measurements of atom dynamics in an optical lattice. The current clock and simulations have the atoms arranged in one dimension.

However, in the future, the researchers hope to couple multiple types of synthetic atomic spin states to create exotic behavior at more complex levels. Ye's team is developing a 3-D version of the atomic clock by adding more laser beams to form more lattices, which are expected to enable spin-orbit coupling in multiple dimensions.

S. Kolkowitz, S.L. Bromley, T. Bothwell, M.L.Wall, G.E. Marti, A.P. Koller, X. Zhang, A.M. Reyand J. Ye. Spin-orbit coupled fermions in an optical lattice clock. December 21, 2016. Nature. DOI



Stretching time to improve extreme event prediction

‎Tuesday, ‎December ‎27, ‎2016, ‏‎12:22:02 AMGo to full article
Paris, France (SPX) Dec 21, 2016 - Stretching time scales to explore extreme events in nature seemed impossible, yet this feat is now conceivable thanks to a team from the Institut FEMTO-ST (CNRS/UFC/UTBM/ENSMM), which used an innovative measurement technique enabling the capture of such events in real time.

This technique, which is currently applied in the field of photonics, could help predict rogue wave events1 on the ocean surface, along with other extreme natural phenomena. This research, which was conducted in collaboration with teams from Finland, Ireland, and Canada, will be published in the journal Nature Communications on December 19, 2016.

Instability and chaos in physical systems are random natural phenomena that are generally highly sensitive to fluctuations in initial conditions, however small they may be. To understand these complex and omnipresent phenomena in nature, researchers recently conducted experiments involving the propagation of light waves, and leading to the formation of ultrafast pulses on a picosecond timescale (a millionth of a millionth of a second).

The study of such phenomena in optics offers the advantage of taking place on very short timescales, thus making it possible to measure a representative sample of events and to reliably characterize its statistical properties.

Although they have helped improve the understanding of the dynamics connected to extreme events, until now these studies have nevertheless been conducted indirectly, due to the response time of current detectors, which are too slow to capture these rare events.

Recent experiments carried out at the Institut Femto-ST in Besancon have made it possible to overcome this limitation. Based on the principle of a time lens2, which stretches the timescale by a factor of 100 while increasing resolution, this new method has enabled researchers to observe giant light pulses in real time, with an intensity 1,000 times greater than that of the initial fluctuations from the light source, a laser.

To do so, they used a butterfly effect known in optics as modulation instability, which magnifies the microscopic noise intrinsically present in a laser beam traveling along telecommunication fiber optics.

The scope of these results goes well beyond the field of photonics, since this type of background noise is generally considered to be one of the possible mechanisms behind the destructive rogue waves that suddenly appear on the surface of oceans, and is also believed to be present in other systems such as plasma dynamics in the early Universe.

The ability to stretch timescales in optics opens a new path for the exploration and understanding of numerous natural systems for which it remains quite difficult to directly study instabilities, and thereby obtain reliable statistical samples.

This research was conducted by researchers from the Femto-ST laboratory: Franche-Comte electronique mecanique thermique et optique - sciences et technologies (CNRS/Universite Franche-Comte/Universite de technologie de Belfort-Montbeliard/Ecole Nationale Superieure de Mecanique et des Microtechniques de Besancon). L'UTMB, ENSMM and Universite de Franche-Comte are part of the community of universities and establishments within the "Universite Bourgogne Franche-Comte."

Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. M. Narhi, B. Wetzel, C. Billet, S.Toenger, T. Sylvestre, J.-M. Merolla, R. Morandotti, F. Dias, G. Genty, J. M. Dudley. Nature Communications, 19 december 2016. DOI :10.1038/NCOMMS13675.



Laser pulses help scientists tease apart complex electron interactions

‎Tuesday, ‎December ‎27, ‎2016, ‏‎12:22:02 AMGo to full article
Upton NY (SPX) Dec 22, 2016 - Scientists studying high temperature superconductors-materials that carry electric current with no energy loss when cooled below a certain temperature-have been searching for ways to study in detail the electron interactions thought to drive this promising property. One big challenge is disentangling the many different types of interactions-for example, separating the effects of electrons interacting with one another from those caused by their interactions with the atoms of the material.

Now a group of scientists including physicists at the U.S. Department of Energy's Brookhaven National Laboratory has demonstrated a new laser-driven "stop-action" technique for studying complex electron interactions under dynamic conditions.

As described in a paper just published in Nature Communications, they use one very fast, intense "pump" laser to give electrons a blast of energy, and a second "probe" laser to measure the electrons' energy level and direction of movement as they relax back to their normal state.

"By varying the time between the 'pump' and 'probe' laser pulses we can build up a stroboscopic record of what happens-a movie of what this material looks like from rest through the violent interaction to how it settles back down," said Brookhaven physicist Jonathan Rameau, one of the lead authors on the paper.

"It's like dropping a bowling ball in a bucket of water to cause a big disruption, and then taking pictures at various times afterward," he explained.

The technique, known as time-resolved, angle-resolved photoelectron spectroscopy (tr-ARPES), combined with complex theoretical simulations and analysis, allowed the team to tease out the sequence and energy "signatures" of different types of electron interactions.

They were able to pick out distinct signals of interactions among excited electrons (which happen quickly but don't dissipate much energy), as well as later-stage random interactions between electrons and the atoms that make up the crystal lattice (which generate friction and lead to gradual energy loss in the form of heat).

But they also discovered another, unexpected signal-which they say represents a distinct form of extremely efficient energy loss at a particular energy level and timescale between the other two.

"We see a very strong and peculiar interaction between the excited electrons and the lattice where the electrons are losing most of their energy very rapidly in a coherent, non-random way," Rameau said.

At this special energy level, he explained, the electrons appear to be interacting with lattice atoms all vibrating at a particular frequency-like a tuning fork emitting a single note. When all of the electrons that have the energy required for this unique interaction have given up most of their energy, they start to cool down more slowly by hitting atoms more randomly without striking the "resonant" frequency, he said.

The frequency of the special lattice interaction "note" is particularly noteworthy, the scientists say, because its energy level corresponds with a "kink" in the energy signature of the same material in its superconducting state, which was first identified by Brookhaven scientists using a static form of ARPES. Following that discovery, many scientists suggested that the kink might have something to do with the material's ability to become a superconductor, because it is not readily observed above the superconducting temperature.

But the new time-resolved experiments, which were done on the material well above its superconducting temperature, were able to tease out the subtle signal. These new findings indicate that this special condition exists even when the material is not a superconductor.

"We know now that this interaction doesn't just switch on when the material becomes a superconductor; it's actually always there," Rameau said.

The scientists still believe there is something special about the energy level of the unique tuning-fork-like interaction. Other intriguing phenomena have been observed at this same energy level, which Rameau says has been studied in excruciating detail.

It's possible, he says, that the one-note lattice interaction plays a role in superconductivity, but requires some still-to-be-determined additional factor to turn the superconductivity on.

"There is clearly something special about this one note," Rameau said.

Research report



New antimatter breakthrough to help illuminate mysteries of the Big Bang

‎Tuesday, ‎December ‎27, ‎2016, ‏‎12:22:02 AMGo to full article
Swansea UK (SPX) Dec 22, 2016 - Swansea University scientists working at CERN have made a landmark finding, taking them one step closer to answering the question of why matter exists and illuminating the mysteries of the Big Bang and the birth of the Universe.

In their paper published in Nature the physicists from the University's College of Science, working with an international collaborative team at CERN, describe the first precision study of antihydrogen, the antimatter equivalent of hydrogen.

Professor Mike Charlton said: "The existence of antimatter is well established in physics, and it is buried deep in the heart of some of the most successful theories ever developed. But we have yet to answer a central question of why didn't matter and antimatter, which it is believed were created in equal amounts when the Big Bang started the Universe, mutually self-annihilate?

"We also have yet to address why there is any matter left in the Universe at all. This conundrum is one of the central open questions in fundamental science, and one way to search for the answer is to bring the power of precision atomic physics to bear upon antimatter."

It has long been established that any excited atom will reach its lowest state by emitting photons, and the spectrum of light emitted from them represents a kind of atomic fingerprint and it is a unique identifier. The most familiar everyday example is the orange of the sodium streetlights.

Hydrogen has its own spectrum and, as the simplest and most abundant atom in the Universe, it holds a special place in physics. The properties of the hydrogen atom are known with high accuracy, and one in particular, the so-called 1S-2S transition has been determined with a precision close to one part in a hundred trillion - equivalent to knowing the distance between Swansea and London to about a billionth of a metre!

Now in these latest experiments, the team have replaced the proton nucleus of the ordinary atom by an antiproton, and the electron substitute is the positron. By shining laser light at a well-defined frequency onto antihydrogen atoms held in a trap, they have seen that some of them get excited to an upper level, and in so doing leave the trap.

This very first experiment has already determined the frequency of the antihydrogen transition to a few parts in a tenth of a billion.

Professor Mike Charlton added: "To get some sense of the importance of this discovery, we need to understand that it has been 30 years in the making and represents the collaborative work of hundreds of researchers over the years. Enquiries into this area of physics started in the 1980s and this landmark achievement has now opened the door to precision studies of atomic antimatter, which will hopefully bring us closer to answering the question of why matter exists to help solve the mystery as to how the Universe came about."

Research Report



ALPHA observes light spectrum of antimatter for first time

‎Tuesday, ‎December ‎27, ‎2016, ‏‎12:22:02 AMGo to full article
Geneva, Switzerland (SPX) Dec 21, 2016 - In a paper published in the journal Nature, the ALPHA collaboration reports the first ever measurement on the optical spectrum of an antimatter atom. This achievement features technological developments that open up a completely new era in high-precision antimatter research. It is the result of over 20 years of work by the CERN antimatter community.

"Using a laser to observe a transition in antihydrogen and comparing it to hydrogen to see if they obey the same laws of physics has always been a key goal of antimatter research," said Jeffrey Hangst, Spokesperson of the ALPHA collaboration.

Atoms consist of electrons orbiting a nucleus. When the electrons move from one orbit to another they absorb or emit light at specific wavelengths, forming the atom's spectrum. Each element has a unique spectrum. As a result, spectroscopy is a commonly used tool in many areas of physics, astronomy and chemistry. It helps to characterise atoms and molecules and their internal states. For example, in astrophysics, analysing the light spectrum of remote stars allows scientists to determine their composition.

With its single proton and single electron, hydrogen is the most abundant, simple and well-understood atom in the Universe. Its spectrum has been measured to very high precision. Antihydrogen atoms, on the other hand are poorly understood. Because the universe appears to consist entirely of matter, the constituents of antihydrogen atoms - antiprotons and positrons - have to be produced and assembled into atoms before the antihydrogen spectrum can be measured.

It's a painstaking process, but well worth the effort since any measurable difference between the spectra of hydrogen and antihydrogen would break basic principles of physics and possibly help understand the puzzle of the matter-antimatter imbalance in the universe.

Today's ALPHA result is the first observation of a spectral line in an antihydrogen atom, allowing the light spectrum of matter and antimatter to be compared for the first time. Within experimental limits, the result shows no difference compared to the equivalent spectral line in hydrogen. This is consistent with the Standard Model of particle physics, the theory that best describes particles and the forces at work between them, which predicts that hydrogen and antihydrogen should have identical spectroscopic characteristics.

The ALPHA collaboration expects to improve the precision of its measurements in the future. Measuring the antihydrogen spectrum with high-precision offers an extraordinary new tool to test whether matter behaves differently from antimatter and thus to further test the robustness of the Standard Model.

ALPHA is a unique experiment at CERN's Antiproton Decelerator facility, able to produce antihydrogen atoms and hold them in a specially-designed magnetic trap, manipulating antiatoms a few at a time. Trapping antihydrogen atoms allows them to be studied using lasers or other radiation sources.

"Moving and trapping antiprotons or positrons is easy because they are charged particles," said Hangst. "But when you combine the two you get neutral antihydrogen, which is far more difficult to trap, so we have designed a very special magnetic trap that relies on the fact that antihydrogen is a little bit magnetic."

Antihydrogen is made by mixing plasmas of about 90,000 antiprotons from the Antiproton Decelerator with positrons, resulting in the production of about 25,000 antihydrogen atoms per attempt. Antihydrogen atoms can be trapped if they are moving slowly enough when they are created. Using a new technique in which the collaboration stacks anti-atoms resulting from two successive mixing cycles, it is possible to trap on average 14 anti-atoms per trial, compared to just 1.2 with earlier methods.

By illuminating the trapped atoms with a laser beam at a precisely tuned frequency, scientists can observe the interaction of the beam with the internal states of antihydrogen. The measurement was done by observing the so-called 1S-2S transition. The 2S state in atomic hydrogen is long-lived, leading to a narrow natural line width, so it is particularly suitable for precision measurement.

The current result, along with recent limits on the ratio of the antiproton-electron mass established by the ASACUSA collaboration, and antiproton charge-to-mass ratio determined by the BASE collaboration, demonstrate that tests of fundamental symmetries with antimatter at CERN are maturing rapidly.



Number of known black holes expected to double in two years with new detection method

‎Tuesday, ‎December ‎27, ‎2016, ‏‎12:22:02 AMGo to full article
Waterloo, Canada (SPX) Dec 20, 2016 - Researchers from the University of Waterloo have developed a method that will detect roughly 10 black holes per year, doubling the number currently known within two years, and it will likely unlock the history of black holes in a little more than a decade.

Avery Broderick, a professor in the Department of Physics and Astronomy at the University of Waterloo, and Mansour Karami, a PhD student also from the Faculty of Science, worked with colleagues in the United States and Iran to come up with the method that has implications for the emerging field of gravitational wave astronomy and the way in which we search for black holes and other dark objects in space. It was published this week in The Astrophysical Journal.

"Within the next 10 years, there will be sufficient accumulated data on enough black holes that researchers can statistically analyze their properties as a population," said Broderick, also an associate faculty member at the Perimeter Institute for Theoretical Physics. "This information will allow us to study stellar mass black holes at various stages that often extend billions of years."

Black holes absorb all light and matter and emit zero radiation, making them impossible to image, let alone detect against the black background of space. Although very little is known about the inner workings of black holes, we do know they play an integral part in the lifecycle of stars and regulate the growth of galaxies.

The first direct proof of their existence was announced earlier this year by the Laser Interferometer Gravitational-Wave Observatory (LIGO) when it detected gravitational waves from the collision of two black holes merging into one.

"We don't yet know how rare these events are and how many black holes are generally distributed across the galaxy," said Broderick. "For the first time we'll be placing all the amazing dynamical physics that LIGO sees into a larger astronomical context."

Broderick and his colleagues propose a bolder approach to detecting and studying black holes, not as single entities, but in large numbers as a system by combining two standard astrophysical tools in use today: microlensing and radio wave interferometry.

Gravitational microlensing occurs when a dark object such as a black hole passes between us and another light source, such as a star. The star's light bends around the object's gravitational field to reach Earth, making the background star appear much brighter, not darker as in an eclipse.

Even the largest telescopes that observe microlensing events in visible light have a limited resolution, telling astronomers very little about the object that passed by. Instead of using visible light, Broderick and his team propose using radio waves to take multiple snapshots of the microlensing event in real time.

"When you look at the same event using a radio telescope - interferometry - you can actually resolve more than one image. That's what gives us the power to extract all kinds of parameters, like the object's mass, distance and velocity," said Karami, a doctoral student in astrophysics at Waterloo.

Taking a series of radio images over time and turning them into a movie of the event will allow them to extract another level of information about the black hole itself.



Magnifying time reveals fundamental rogue wave instabilities of nature

‎Tuesday, ‎December ‎27, ‎2016, ‏‎12:22:02 AMGo to full article
Montreal, Canada (SPX) Dec 22, 2016 - Researchers from INRS and the FEMTO-ST Institute in France have used a novel measurement technique that magnifies time to reveal how ultrafast intense pulses of light can be generated from noise on a laser as it propagates in optical fibre. These experiments confirm theoretical predictions made decades ago, and may have implications in understanding the science of giant rogue waves on the ocean and the formation of other extreme events in nature. In optics, these waves occur as short and intense light pulses. The work is published in the journal Nature Communications on December 19, 2016.

Instability and chaos are common in natural systems that are highly sensitive to initial conditions - where a small change in the input can lead to dramatic consequences. To understand chaos under controlled conditions, scientists have often used experiments with light and optics, which allow the study of even the most complex dynamics on a benchtop.

A serious limitation of these existing experiments in optics, however, is that the chaotic behaviour is often seen on ultrafast picosecond timescales - a millionth of a millionth of a second that is simply too fast to measure in real time even using the fastest available experimental equipment.

An international collaboration with teams in Canada, France, Finland and Ireland have now overcome this limitation, using a novel experimental technique known as a time lens.

"In a similar way as a stroboscope can resolve the evolution of a bouncing ball in the dark or the movements of dancers in a night club, this time lens technique can take one million snapshots of the optical field every second, while additionally increasing the temporal resolution by a factor of 100. This approach allowed us to efficiently measure the chaotic dynamics of the light pulses and their temporal characteristics via available electronic detectors." explains Benjamin Wetzel, researcher in the group of Pr. Morandotti at INRS, Canada.

The experimental results have confirmed theoretical studies dating back to the 1980s. The particular phenomenon that was studied is known as modulation instability, an optical "Butterfly Effect" that amplifies microscopic noise on a laser beam to create giant pulses of light with intensity over 1000 times that of the initial noise on the injected laser beam.

These results are important because there is currently intense interest in studying noise amplifying instabilities in many different areas of physics, from trying to unravel the physics describing giant rogue waves on the ocean, to understanding plasma dynamics in the early universe.

John Dudley, the lead Investigator of the work at FEMTO-ST highlights that "there are many systems in nature where it is very difficult to study rapid fluctuations associated with instabilities, but the ability to magnify ultrafast dynamics in optics now opens a new window into performing more experiments in this field."

An unstable modulation instability optical field consisting of picosecond pulses that are normally too fast to be detected. The use of the technique of time magnification allows these chaotic pulses to be measured for the first time. Benjamin Wetzel

Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. M. Narhi, B. Wetzel, C. Billet, S.Toenger, T. Sylvestre, J.-M. Merolla, R. Morandotti, F. Dias, G. Genty, J. M. Dudley. Nature Communications 7, DOI: 10.1038/ncomms13675 (2016).

Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. P. Suret, R. El Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj and S. Bielawski. Nature Communications 7, Article number: 13136 (2016).



Cerium hexaboride challenges physicists to come up with new theory

‎Tuesday, ‎December ‎27, ‎2016, ‏‎12:22:02 AMGo to full article
Moscow, Russia (SPX) Dec 23, 2016 - Scientists from MIPT and other research institutes and universities have discovered unusual phenomena occurring in a single cerium hexaboride (CeB?) crystal. By performing an electron spin resonance (ESR) experiment, the researchers confirmed the status of the material that had been dubbed an "exception to exceptions" for the way its behavior defies any explanation in terms of the existing models and conventional theories. The research findings were published in Scientific Reports.

Experimental findings of this kind offer a way to test the validity of the accepted scientific theories. By implication, recognizing the fundamental results of such research is much more important than seeking new practical applications for this particular material.

Despite being studied for over 40 years, cerium hexaboride never stops challenging our understanding of the physics behind its unusual properties. It is a compound that belongs to the class of strongly correlated materials, i.e., materials whose properties cannot be described adequately without taking into account the interactions between electrons (aka electronic correlation).

Up to now, many theories have been proposed to explain the anomalous physical properties of cerium hexaboride, but they all proved unable to predict the results of ESR experiments. It might be the case that the theory of ESR in strongly correlated systems needs to be substantially improved in order to account for the exceptional behavior of cerium hexaboride.

ESR spectroscopy is used to study samples that contain particles with unpaired spins, viz., electrons and radicals. The sample is placed in a steady magnetic field and exposed to microwave radiation.

As a result, an ESR spectrum of the sample is obtained, from which data on its chemical structure and properties can be extracted. Absolute calibration of ESR spectra in units of magnetic permeability and ESR spectral line shape analysis enable scientists to find the spectroscopic parameters: g-factor (gyromagnetic ratio), line width (spin relaxation time), and oscillating magnetization or dynamic magnetic susceptibility.

ESR in cerium hexaboride was reported in an earlier study by the same authors. They developed a unique experimental technique capable of picking up the ESR signal from cerium hexaboride and similar materials. Conventional ESR spectrometers often face considerable difficulties detecting signals from strongly correlated materials.

The experimental findings turned out to be rather unexpected for the researchers. For one thing, their measurements showed that the oscillating magnetization along the [100] crystallographic direction may exceed the total static magnetization of the sample. This runs contrary to the commonsense expectation (and theoretical predictions), since oscillating magnetization is theoretically supposed to be one of the constituent parts forming the magnetic moment of the sample, i.e., it must be less than the total magnetization.

According to the scientists, a simple way to explain this experimental fact would be to say that there are some additional, unaccounted for interactions between free electrons and the electrons in the 4f subshell of cerium ions. This qualitative explanation, however, needs to be confirmed by further theoretical calculations.

Another unexpected result of the experiment is the correlation between the angular dependences of the magnetoresistance and the ESR spectral line width with respect to the external magnetic field (under crystal sample rotation). The correlation is remarkable, as the above parameters have a completely different physical nature, therefore such correspondence was not anticipated.

The authors of the study offer the following explanation: since ESR line width is largely determined by spin fluctuations, the value of the material's magnetoresistance may likewise be dominated by band electron scattering on spin fluctuations.

The measurements reported in the study were made possible thanks to improvements to the equipment design introduced by Marat Gilmanov and Alexander Samarin, doctoral students at MIPT working under the supervision of Alexey Semeno, a senior research fellow at Prokhorov General Physics Institute of the Russian Academy of Sciences (GPI RAS) who also graduated from MIPT.

"We have achieved a greater degree of sensitivity and stability for this class of materials than any other experimenters in the world. This means that no one else can perform ESR measurements of strongly correlated metals as accurately as we can. And it is our improved equipment that enables us to see what others cannot," says MIPT's Prof. Sergey Demishev, who also heads the Department of Low Temperatures and Cryogenic Engineering at Prokhorov General Physics Institute.

Research Report



New theoretical framework for improved particle accelerators

‎Tuesday, ‎December ‎27, ‎2016, ‏‎12:22:02 AMGo to full article
Plainsboro NJ (SPX) Dec 21, 2016 - Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), in collaboration with researchers in South Korea and Germany, have developed a theoretical framework for improving the stability and intensity of particle accelerator beams. Scientists use the high-energy beams, which must be stable and intense to work effectively, to unlock the ultimate structure of matter. Physicians use medical accelerators to produce beams that can zap cancer cells.

"When physicists design the next-generation of accelerators, they could use this theory to create the most optimized focused beams," said PPPL physicist Hong Qin. Dr. Qin, Executive Dean of the School of Nuclear Science and Technology at the University of Science and Technology of China, is a co-author of the research described in the November issue of Physical Review Letters.

Accelerator beams consist of billions of charged particles that zip through tunnels or tubes before colliding with their targets. In scientific experiments, these beams strike their targets with an enormous energy density and generate subatomic particles that have not been seen since the early universe. The long-sought Higgs Boson, the particle that carries the field that gives mass to some fundamental particles, was discovered in this way in the Large Hadron Collider in Europe, the world's largest and most powerful accelerator.

In order for a beam to maintain its intensity, the particles in the beam must remain close together as they zip through the beamline. However, the beam loses intensity as the mutual repulsion of particles and imperfections of the accelerator degrade the beam.

To minimize such degradation and losses, the walls of large accelerators are lined with high precision magnets to control their motion.

The new research advances PPPL's theoretical work over the past seven years to improve the stability of beam particles. The theory strongly couples the vertical and horizontal motions of the particles - in contrast to standard theory that treats the different motions as independent of each other. Results of the theory "provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations," according to the paper.

Lead author of the work is Moses Chung, a doctoral graduate of the Princeton Program in Plasma Physics who is now with the Ulsan National Institute of Science and Technology in South Korea.

Co-authors include the late Ronald Davidson, a former director of PPPL and professor of astrophysical sciences at Princeton University, and Lars Groening and Chen Xiao of the Helmholtz Centre for Heavy Ion Research in Germany. Support for this work comes from the National Research Foundation of Korea and the DOE Office of Science.

The paper addresses a 1959 work by two Russian physicists that formed the basis for analysis of the properties of high-intensity beams for the past several decades. This work considers the particle motions to be uncoupled.

Chung and his co-authors modify the Russian model - called the Kapchinskij-Vladimirskij distribution - to include all coupling forces and other elements that can make the beams more stable.

The resulting theoretical tool, which generalized the Russian model, agreed well with simulation results for the Emittance Transfer Experiment at the Helmholtz Centre in Germany, which illustrated a new beam manipulation technology for future accelerators. More intense beams could enable the discovery of new subatomic particles, said Qin.



Spinning black hole swallowing star explains superluminous event

‎Tuesday, ‎December ‎27, ‎2016, ‏‎12:22:02 AMGo to full article
Munich, Germany (SPX) Dec 13, 2016 - In 2015, the All Sky Automated Survey for SuperNovae (ASAS-SN) detected an event, named ASASSN-15lh, that was recorded as the brightest supernova ever - and categorised as a superluminous supernova, the explosion of an extremely massive star at the end of its life. It was twice as bright as the previous record holder, and at its peak was 20 times brighter than the total light output of the entire Milky Way.

An international team, led by Giorgos Leloudas at the Weizmann Institute of Science, Israel, and the Dark Cosmology Centre, Denmark, has now made additional observations of the distant galaxy, about 4 billion light-years from Earth, where the explosion took place and they have proposed a new explanation for this extraordinary event.

"We observed the source for 10 months following the event and have concluded that the explanation is unlikely to lie with an extraordinarily bright supernova. Our results indicate that the event was probably caused by a rapidly spinning supermassive black hole as it destroyed a low-mass star," explains Leloudas.

In this scenario, the extreme gravitational forces of a supermassive black hole, located in the centre of the host galaxy, ripped apart a Sun-like star that wandered too close - a so-called tidal disruption event, something so far only observed about 10 times.

In the process, the star was "spaghettified" and shocks in the colliding debris as well as heat generated in accretion led to a burst of light. This gave the event the appearance of a very bright supernova explosion, even though the star would not have become a supernova on its own as it did not have enough mass.

The team based their new conclusions on observations from a selection of telescopes, both on the ground and in space. Among them was the Very Large Telescope at ESO's Paranal Observatory, the New Technology Telescope at ESO's La Silla Observatory and the NASA/ESA Hubble Space Telescope [1]. The observations with the NTT were made as part of the Public ESO Spectroscopic Survey of Transient Objects (PESSTO).

"There are several independent aspects to the observations that suggest that this event was indeed a tidal disruption and not a superluminous supernova," explains coauthor Morgan Fraser from the University of Cambridge, UK (now at University College Dublin, Ireland).

In particular, the data revealed that the event went through three distinct phases over the 10 months of follow-up observations. These data overall more closely resemble what is expected for a tidal disruption than a superluminous supernova.

An observed re-brightening in ultraviolet light as well as a temperature increase further reduce the likelihood of a supernova event. Furthermore, the location of the event - a red, massive and passive galaxy - is not the usual home for a superluminous supernova explosion, which normally occur in blue, star-forming dwarf galaxies.

Although the team say a supernova source is therefore very unlikely, they accept that a classical tidal disruption event would not be an adequate explanation for the event either.

Team member Nicholas Stone from Columbia University, USA, elaborates: "The tidal disruption event we propose cannot be explained with a non-spinning supermassive black hole. We argue that ASASSN-15lh was a tidal disruption event arising from a very particular kind of black hole."

The mass of the host galaxy implies that the supermassive black hole at its centre has a mass of at least 100 million times that of the Sun. A black hole of this mass would normally be unable to disrupt stars outside of its event horizon - the boundary within which nothing is able to escape its gravitational pull. However, if the black hole is a particular kind that happens to be rapidly spinning - a so-called Kerr black hole - the situation changes and this limit no longer applies.

"Even with all the collected data we cannot say with 100% certainty that the ASASSN-15lh event was a tidal disruption event," concludes Leloudas. "But it is by far the most likely explanation."

This research was presented in a paper entitled "The Superluminous Transient ASASSN-15lh as a Tidal Disruption Event from a Kerr Black Hole", by G. Leloudas et al. to appear in the new Nature Astronomy magazine.



Neutrons identify key ingredients of the quantum spin liquid recipe

‎Wednesday, ‎December ‎14, ‎2016, ‏‎5:25:52 AMGo to full article
Oak Ridge TN (SPX) Dec 12, 2016 - Neutron scattering studies of a rare earth metal oxide have identified fundamental pieces to the quantum spin liquid puzzle, revealing a better understanding of how and why the magnetic moments within these materials exhibit exotic behaviors such as failing to freeze into an ordered arrangement even near absolute zero temperatures.

In a paper published in Nature Physics, a team of researchers from the Georgia Institute of Technology, the University of Tennessee and the Department of Energy's Oak Ridge National Laboratory used neutrons to examine the origins of unusual magnetic behavior in a rare earth-based metal oxide, ytterbium-magnesium-gallium-tetraoxide (YbMgGaO4). The material, discovered in 2015, is known to have strange magnetic properties, putting it in a unique category of materials classified as quantum spin liquids.

"A quantum spin liquid is an exotic state of matter characterized by the entanglement of particles over long distances across the atomic scale," said lead investigator Martin Mourigal, an assistant physics professor at the Georgia Institute of Technology.

Think of Schrodinger's cat, the thought experiment, he said: Many particles participate in a quantum superposition, where multiple quantum states combine to form a new quantum state, and cannot be characterized by the behavior of individual particles.

By definition, he said, "it's something we can't explain with classical physics."

In a series of experiments at ORNL's Spallation Neutron Source, the researchers revealed three key features underpinning the material's exotic properties:

antiferromagnetic interactions, where groups of electron spins have an antiparallel alignment with their respective neighbors; spin space anisotropy, meaning that individual magnetic moments strongly prefer aligning themselves alongside specific directions in the material; and chemical disorder between the material's magnetic layers that randomizes the interactions between electron spins.

Neutrons are well suited for studying magnetism because their lack of electric charge allows them to penetrate through materials, even when the neutrons' energy is low. The neutrons also have magnetic moments, allowing researchers to directly probe the behavior of spins within materials.

"Neutron scattering is the only technique that allows us to study the dynamics of quantum spin liquids at the lowest temperatures," Mourigal said.

However, quantum spin liquids present a challenge because their magnetic moments are constantly changing. In typical materials, researchers can lock the spins into certain symmetric patterns by lowering the temperature of the sample, but this approach doesn't work on spin liquids.

In the team's first neutron scattering measurements of an YbMgGaO4 single-crystal sample at the SNS's Cold Neutron Chopper Spectrometer, CNCS, the researchers observed that, even at a temperature of 0.06 kelvins (approximately negative 460 degrees Fahrenheit), magnetic excitations remained disordered or "fuzzy." This fluctuating magnetic behavior, known to occur to quantum spin liquids, runs counter to the laws of classical physics.

"The material screamed spin liquid when we put it in the beam," Mourigal said.

To overcome this fuzziness, the team used an 8 Tesla magnet to create a magnetic field that locked the spins into an ordered and partly frozen arrangement, allowing for better measurements.

"Once we applied the magnetic field, we were able to measure coherent magnetic excitations in the material that propagate sort of like sound waves," said CNCS instrument scientist Georg Ehlers. "When a neutron comes into the material, it flies by a magnetic moment and shakes it. The nearby magnetic moments see this happening, and they all begin to vibrate in unison. The frequency of these vibrations is determined by the energy between neighboring spins."

Those magnetic field measurements enabled the team to directly validate theoretical expectations and provided a physical understanding of the spin behavior and the system as a whole.

"A quantum spin liquid is an intrinsically collective state of matter," said Mourigal. "But if you want to understand the society, you need to understand the individuals as well."

The team then turned to another SNS instrument, the Fine-Resolution Fermi Chopper Spectrometer instrument, SEQUOIA, to understand the individual properties of the magnetic moments.

"In rare earth magnets, rich physics, like what was observed at the CNCS instrument, can emerge from the fact that the individual spins can prefer to point along certain directions in a crystal," said SEQUOIA instrument scientist Matthew Stone. "SEQUOIA examined the localized higher energy states to confirm the individual pieces of the model used to describe the CNCS data were correct."

Mourigal says the information gleaned from the experiments will enable researchers to develop better theoretical models to further study these quantum phenomena.

"While the exact nature of the quantum state hosted by this material has not been fully established yet, we've discovered that chemical disorder and other effects are important here," said Mourigal. "With these experiments, we've really been able to nail down what ingredients need to be taken into the recipe for a quantum spin liquid in this material."

The paper's authors are Joseph A. M. Paddison, Marcus Daum, Zhiling Dun, Georg Ehlers, Yaohua Liu, Matthew B. Stone, Haidong Zhou and Martin Mourigal. The YbMgGaO4 sample was synthesized at the University of Tennessee. Supplementary measurements of the YbMgGaO4 crystal structure were made at the SNS CORELLI instrument.



High-tech glass plates to be used to discover the birth of new black holes

‎Wednesday, ‎December ‎14, ‎2016, ‏‎5:25:52 AMGo to full article
Leicester, UK (SPX) Dec 13, 2016 - The University of Leicester is providing a new type of X-ray mirror to the French space agency, CNES, for the Chinese-French satellite 'SVOM' which is designed to discover and study Gamma-Ray Bursts from newly formed black holes. SVOM will be launched into orbit in 2021.

The mirror will become part of the X-ray telescope, which is essential in precisely locating these new discoveries. On Wednesday 7 December there was a formal handover of the delicate and very expensive glass components that form part of this mirror by the French team to the University of Leicester, so that the University team can test them and make the first complete version of this mirror.

Professor Julian Osborne, who is leading this work at Leicester, said: "X-rays cannot be reflected like normal light, only at very small angles, so X-ray mirrors have to be made to very high accuracy.

Previously this has required very heavy mirrors, but the SVOM satellite cannot carry such a weight. We are making a new type of X-ray mirror, based on the eye of a lobster, which has microscopic square pores with reflecting interior surfaces. This new type of mirror has only a fraction of the weight of previous X-ray mirrors."

He added: "Gamma-ray bursts are the most luminous explosions in the Universe, they are caused by the death of massive stars and by the collision of two dead neutron stars. Both types of explosion are thought to form a new black hole. The explosions are so bright that they can be seen even from the first few per cent of the age of the Universe.

Such distant bursts allow us to study the evolution of the Universe, which is otherwise very difficult. Also, the recent discovery of bursts of gravitational waves gives hope that we will discover X-rays form the same colliding dead stars, this would tell us many new details of the make-up of these stars and the nature of the explosion."

Dr Jim Pearson from the Department of Physics and Astronomy said: "We are very excited to be starting to build this new mirror. It will be the first lobster X-ray optic to be used in orbit. We have previously used Micro-Pore glass plates from Photonis in France for a different type of X-ray telescope to study the surface of the planet Mercury, so the SVOM X-ray telescope will be built using our earlier experience."







Beyond Perception - DVD

by Chuck Missler  




PRICE R 159.00


Media Type: DVD
Published 20-Sep-2010
Published by Koinonia House
Why do scientists now believe we live in a 10-dimensional universe?

Has physics finally reached the very boundaries of reality?

There seems to be evidence to suggest that our world and everything in it are only ghostly images; projections from a level of reality so beyond our own that the real reality is literally beyond both space and time. The main architect of this astonishing idea is one of the world's most eminent thinkers- physicist David Bohm, a protege of Einstein's. Earlier, he noticed that, in plasmas, particles stopped behaving like individuals and started behaving as if they were part of a larger and inter connected whole. He continued his work in the behavior of oceans of these particles, noting their behaving as if they know what each on the untold trillions of individual particles were doing.

This briefing pack DVD comes with:
-two mp3 audio files
-one notes file in pdf format

This DVD includes notes in PDF format and MP3 files.

Encoding: This DVD will be viewable in other countries WITH the proper DVD player and television set.
Format: Color, Fullscreen
Aspect Ratio: 4:3
Audio Encoding: Dolby Digital 2.0 stereo
Run Time: 2 hour(s)
Number of discs: 1

The Beyond Collection 







Price R399.00

 The Collection Includes the 4 DVD'S below




DVD - R159.00



DVD - R159.00



DVD - R159.00



DVD - R159.00


If you purchase the 4 discs individually the price will be R636.00


 YOU SAVE R 237.00!

Genetics Research Confirms Biblical Timeline

Exciting research from the summer of 2012 described DNA variation in the protein coding regions of the human genome linked to population growth. One of the investigation's conclusions was that the human genome began to rapidly diversify not more than 5,000 years ago.1,2 This observation closely agrees with a biblical timeline of post-flood human diversification. Yet another study, this one published in the journal Nature, accessed even more extensive data and unintentionally confirmed the recent human history described in Genesis.3

Differences in human DNA can be characterized across populations and ethnic groups using a variety of techniques. One of the most informative genetic technologies in this regard is the analysis of rare DNA variation in the protein coding regions of the genome. Variability in these regions is less frequent than the more numerous genetic differences that occur in the non-coding regulatory regions. Researchers can statistically combine this information with demographic data derived from population growth across the world to generate time scales related to human genetic diversification.4

What makes this type of research unique is that evolutionary scientists typically incorporate hypothetical deep time scales taken from the authority of paleontologists or other similar deep-time scenarios to calibrate models of genetic change over time. Demographics-based studies using observed world population dynamics do not rely on this bias and are therefore more accurate and realistic.

In a 2012 Science report, geneticists analyzed DNA sequences of 15,585 protein-coding gene regions in the human genome for 1,351 European Americans and 1,088 African Americans for rare DNA variation.1,2 This new study accessed rare coding variation in 15,336 genes from over 6,500 humans—almost three times the amount of data compared to the first study.3 A separate group of researchers performed the new study.

The Nature results convey a second spectacular confirmation of the amazingly biblical conclusions from the first study. These scientists confirmed that the human genome began to rapidly diversify not more than 5,000 years ago. In addition, they found significant levels of  variation to be associated with degradation of the human genome, not forward evolutionary progress. This fits closely with research performed by Cornell University geneticist John Sanford who demonstrated through biologically realistic population genetic modeling that genomes actually devolve over time in a process called genetic entropy.5

According to the Bible, the pre-flood world population was reduced to Noah's three sons and their wives, creating a genetic bottleneck from which all humans descended. Immediately following the global flood event, we would expect to see a rapid diversification continuing up to the present. According to Scripture, this began not more than 5,000 years ago. We would also expect the human genome to devolve or degrade as it accumulates irreversible genetic errors over time. Now, two secular research papers confirm these biblical predictions.


  1. Tomkins, J. 2012. Human DNA Variation Linked to Biblical Event Timeline. Creation Science Update. Posted on icr.org July 23, 2012, accessed December 31, 2012.
  2. Tennessen, J. et al. 2012. Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes. Science. 337 (6090): 64-69.
  3. Fu, W, et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature. Published online before print, July 13, 2012.
  4. Keinan, A and A. Clark. 2012. Recent Explosive Human Population Growth Has Resulted in an Excess of Rare Genetic Variants. Science. 336 (6082): 740-743.
  5. Sanford, J. C. 2008. Genetic Entropy and the Mystery of the Genome, 3rd ed. Waterloo, NY: FMS Publications.

* Dr. Tomkins is a Research Associate and received his Ph.D. in Genetics from Clemson University.



Earth Remains the Only Goldilocks Planet

‎Yesterday, ‎February ‎16, ‎2017, ‏‎10:00:00 AMGo to full article

Astronomer Stephen Kane hunts for signs of life in outer space. His team researched a distant star called Wolf 1061. Exoplanets (planets outside our solar system) orbit Wolf 1061, and one of them held the promise of liquid water, a prerequisite for life.



Dinosaur Eggs Not Bird-Like After All

‎Monday, ‎February ‎13, ‎2017, ‏‎10:00:00 AMGo to full article

Prevailing secular theory considers birds to be living dinosaurs, but new science is hatching to support the stark differences between these creatures. The data demonstrate dinosaurs were more likely cold-blooded like all modern reptiles.




Solving Appendix Mysteries

‎Yesterday, ‎February ‎9, ‎2017, ‏‎10:00:00 AMGo to full article

Some mammals have an appendix connected to their cecum—the first section of the large intestine—but others don't. How and when did that once-mysterious organ originate?



What about the Big Bang Theory?

‎Yesterday, ‎February ‎6, ‎2017, ‏‎10:00:00 AMGo to full article

Did the universe start with the Big Bang? Many Christians believe God used the Big Bang to create all that we see today. But ICR Astrophysicist Dr. Jason Lisle has a different perspective.




Scientific Evidence for Divine Design [Podcast]

‎Thursday, ‎February ‎2, ‎2017, ‏‎10:00:00 AMGo to full article

Geology, astronomy, and biology all point to a divine Designer. ICR zoologist and researcher Frank Sherwin examines the evidence in this 5-part podcast series. Mr. Sherwin uncovers the scientific and biblical evidence for a global Flood, designed universe, and true origin and history of biological structures.




What Was the Star of Bethlehem?

‎Yesterday, ‎January ‎26, ‎2017, ‏‎10:00:00 AMGo to full article

What "star" did the wise men see? Some say it was a planetary conjunction, and others tell us it was a supernatural manifestation. ICR Astrophysicist Dr. Jason Lisle gives his perspective.



Pregnant Mom Transfers Famine Info to Baby

‎Monday, ‎January ‎23, ‎2017, ‏‎10:00:00 AMGo to full article

A Chinese famine was so severe that 35 million lives perished between 1958 to 1962 due to the state's agricultural mistakes. Interestingly, this tragedy highlights an unseen biological relationship between organisms and their environment over multiple generations.




Well-Known Scientist Resigns, Cites Climate Craziness

‎Thursday, ‎January ‎19, ‎2017, ‏‎10:00:00 AMGo to full article

Professor Judith Curry, a well-known Georgia Institute of Technology climatologist, recently resigned her tenured faculty position. She said the "craziness" of climate science was a "deciding factor."




Fast Evolution Confirms Creationist Theory

‎Monday, ‎January ‎16, ‎2017, ‏‎10:00:00 AMGo to full article

A tenet of creationist theory maintains that creatures are designed for robust speciation. Although they cannot change into fundamentally different kinds, creatures can rapidly express a wide diversity of traits to fit changing environments. "Fast evolution affects everyone, everywhere" is one headline from the theme of the Royal Society's life science journal in January, 2017. But its content further bolsters creationist theory.




That's a Fact: Big Bang?

‎Thursday, ‎January ‎12, ‎2017, ‏‎10:00:00 AMGo to full article

How did the universe begin? Some people say that it came into existence billions of years ago in a massive explosion. But this Big Bang has some big problems.



Amazon Go, Creatures Depend on Sophisticated Sensors

‎Monday, ‎January ‎9, ‎2017, ‏‎10:00:00 AMGo to full article

What does the recently unveiled Amazon Go store have to do with several new studies detailing how flies find water or how tiny roundworms can "taste light?" The "world's most advanced shopping technology" that links the cutting-edge Amazon Go store to its customers depends on the same vital element linking roundworms and spiders to their environments: a sensor.



Brain-Computer Interface Unmasks Mind-Brain Relationship

‎Thursday, ‎January ‎5, ‎2017, ‏‎10:00:00 AMGo to full article

A new bioengineered medical device was designed to treat people with a severe loss of neurologic muscle control. It affords a rare opportunity to clearly see some of the hidden relationships between mind, body, and designed interfaces. A unique case study indicates that the brain actually responds to the mind as a separate entity.



The Bible and Science [Podcast]

‎Tuesday, ‎January ‎3, ‎2017, ‏‎10:00:00 AMGo to full article

Is the Bible trustworthy? Are scientific theories 100% factual? How can Christians resolve the origins debate? ICR’s CEO Dr. Henry Morris III offers clarity and insight for questions about the origin of the universe, the accuracy of Scripture, and the role of faith in every human heart.



Top 2016 News: Marvels of Human Design

‎Yesterday, ‎December ‎29, ‎2016, ‏‎10:00:00 AMGo to full article

Just when we thought we knew all the basics about the human body, anatomists made three surprising discoveries in 2016. The newfound human body complexity borders on science fiction.



'Big Science' Celebrates Invalid Milankovitch Paper

‎Monday, ‎December ‎26, ‎2016, ‏‎10:00:00 AMGo to full article

This month, Science and Nature commemorated the anniversary of an important paper that was published in Science forty years ago, titled "Variations in the Earth's Orbit: Pacemaker of the Ice Ages." This paper convinced many secular scientists of the validity of the astronomical, or Milankovitch, ice age theory. But it appears that celebrated paper has been invalid for a quarter century.



Why Jesus Came Down From Heaven

‎Saturday, ‎December ‎24, ‎2016, ‏‎10:00:00 AMGo to full article

At Christmas, even the secular world makes much of the Christ child, born in a manger. But few seem to recognize that He had been eternally one with the Father in heaven before He chose to come down. And even fewer stop to learn just why He chose to come down.



Top 2016 News: Evidence for Recent Creation

‎Thursday, ‎December ‎22, ‎2016, ‏‎10:00:00 AMGo to full article

In a culture virtually convinced that the world is billions of years old, few people listen to evidence that clearly supports a young Earth. But that's what the Bible teaches. And plenty of science, including four finds from 2016, backs up the Bible's version of Earth history.




Top 2016 News: Fossil Discoveries

‎Monday, ‎December ‎19, ‎2016, ‏‎10:00:00 AMGo to full article

2016 revealed Cretaceous bird-feather proteins, original dinosaur-skin tissue, Triassic mosasaur blood vessels, and organic remnants from ancient fossil microbes. These four finds challenge scientists to question the popular model.



Top 2016 News: Fossil Discoveries

‎Monday, ‎December ‎19, ‎2016, ‏‎10:00:00 AMGo to full article

2016 revealed Cretaceous bird-feather proteins, original dinosaur-skin tissue, Triassic mosasaur blood vessels, and organic remnants from ancient fossil microbes. These four finds challenge scientists to question the popular model.




ICR and AIG Refute BioLogos Old-Earth Argument

‎Thursday, ‎December ‎15, ‎2016, ‏‎10:00:00 AMGo to full article

In 2010, the BioLogos Foundation published an article that attempted to refute biblical creation. It was authored by old-Earth geologists Drs. Gregg Davidson and Ken Wolgemuth. Do their arguments hold up to scientific scrutiny?



Fossil Feather Proteins Confirm Recent Flood

‎Monday, ‎December ‎12, ‎2016, ‏‎10:00:00 AMGo to full article

Ever since Dr. Mary Schweitzer's 2005 discovery of preserved original dinosaur proteins and blood cells, many secular scientists have remained skeptical. How could dinosaur fossils retain original organic material after millions of years? A new ancient bird fossil reveals more unexpected original chemicals, adding fuel to the fierce debate within the scientific community.




Another Feathered Dinosaur Tale

‎Saturday, ‎December ‎10, ‎2016, ‏‎10:00:00 AMGo to full article

On December 8, 2016, a science news story broke that researchers had found entombed in mid-Cretaceous amber a dinosaur tail complete with "primitive plumage"—i.e., feathers. Is this claim credible?



Gene Pleiotropy Roadblocks Evolution

‎Thursday, ‎December ‎8, ‎2016, ‏‎10:00:00 AMGo to full article

In the early days of genetics, genes were thought to be solitary entities. Now it's well understood that genes operate in complex networks and that gene mutations can have multiple detrimental effects. A new study reconfirms mutations are a major roadblock for evolution.




Can Drug Abuse Models Help Cure Society?

‎Monday, ‎December ‎5, ‎2016, ‏‎10:00:00 AMGo to full article

Donald Burke, a Dean at the University of Pittsburgh, recently wrote, "Since 2000, almost half a million Americans have died from drug overdoses." He suggested that scientists craft a digital model of our current drug society to project possible outcomes. Is a computer model really the answer?




'Mud Dragon' Is Really 'Flood Dragon'

‎Monday, ‎November ‎28, ‎2016, ‏‎10:00:00 AMGo to full article

Evolutionary scientists recently announced another spectacular dinosaur discovery. They nicknamed this one the Mud Dragon because it seems it died buried in mud. Junchang Lü and co-authors describe the new oviraptorid dinosaur in Scientific Reports. How did it really die?




‎Yesterday, ‎November ‎24, ‎2016, ‏‎10:00:00 AMGo to full article

All of God’s children must overcome the temptation to allow God’s sovereign provision of our needs to be overshadowed by the pleasure of our bounty and blessings—especially during this very American celebration of the Thanksgiving holiday. Here are some of the original thoughts.



Genesis Quiz

‎Monday, ‎November ‎21, ‎2016, ‏‎10:00:00 AMGo to full article

Think you know Genesis and ancient history?


Answer five quick questions and find out!




The Pangolin: A Mammal with Lizard Scales

‎Thursday, ‎November ‎17, ‎2016, ‏‎10:00:00 AMGo to full article

Due to the complete lack of transitional fossils leading to the remarkable pangolin, secular scientists must resort to "just-so stories" to fill in evolution's significant blanks, including how this amazing creature got its scales. Ricki Lewis, a Ph.D. geneticist, did exactly that with her recent article, "How the Pangolin Got Its Scales—A Genetic Just-So Story."




Pseudo-Pseudogenes Shake Up Evolutionary Paradigm

‎Monday, ‎November ‎14, ‎2016, ‏‎10:00:00 AMGo to full article

Pseudogenes were once thought to be genomic fossils—the broken remnants of genes that mutated long ago. However, research is progressively showing that many pseudogenes are highly functional and critical to life. Now, a newly characterized pseudogene has been shown to produce a functional protein, but only in cells where it is required—leading researchers to coin a new term pseudo-pseudogene.




Creation Physics [Podcast]

‎Yesterday, ‎November ‎10, ‎2016, ‏‎10:00:00 AMGo to full article

Did God use the Big Bang to create the universe? Can we know the age of the earth? ICR physicist Dr. Jake Hebert explores the origin of the universe, recent Ice Age studies, and the relevance of earth age research. Also, learn more about Dr. Hebert as he shares his personal creation journey.



Cattle-Bison Hybrid Stomps On Evolutionary Expectations

‎Monday, ‎November ‎7, ‎2016, ‏‎10:00:00 AMGo to full article

Buried bones, ancient carvings, and cave paintings reveal early European cow-types. Some had the large shoulder humps of bison, some showed the big horns of the extinct aurochs—extinct ancestors of modern cattle—and others seemed like hybrids between these forms. Classic Darwinian evolution asserts one ancestor for various descendants. These supposedly separate into isolated species which can't breed, like tree branches extending far from their trunk. A recent study exposed how this concept clashes with the actual trends in cow-kind variation.



Prions Pass Traits by Their Shape, Not DNA

‎Thursday, ‎November ‎3, ‎2016, ‏‎10:00:00 AMGo to full article

Medical students learn classic pathology cases to help them identify diseases. One such case involved human cannibals who ended up with tremors, seizures, balance disorders, and hallucinations after eating nervous tissue. The fatal diseases, Kuru disease and Creutzfeld-Jakob disease (CJD), which are akin to mad cow disease, are caused by mysterious transmissible proteins known as prions. These proteins can be found in neurons. When a prion becomes pathologically misshapen, an infectious change reaction occurs where prions in the host become shaped the same way as the infecting prion. Could prions play a role in evolution?



Dinosaurs and the Bible [Podcast]

‎Thursday, ‎October ‎27, ‎2016, ‏‎10:00:00 AMGo to full article

How did dinosaurs go extinct? Did they live alongside humans? ICR science writer Brian Thomas reveals the biblical and scientific evidence in this podcast series. Listen to fascinating insights from the fossil record, biblical history, and recent soft-tissue discoveries.



If Earth Is Old, It Should Have Frozen

‎Monday, ‎October ‎24, ‎2016, ‏‎10:00:00 AMGo to full article

Secular speculations insist Earth coalesced into its current state over four billion years ago, leaving one huge problem: the young sun would have been so dim that Earth would have frozen. Secular astronomers have long invoked methane gas to defray this dilemma, called the "faint young sun paradox." A recent study revealed two new reasons to totally reject methane as a rescuing device, leaving this paradox stronger than ever.



Musical Bird Maestros Befuddle Evolution

‎Thursday, ‎October ‎20, ‎2016, ‏‎10:00:00 AMGo to full article

A recent paper shows that the skill of some songbirds to extemporaneously innovate musical repertoire equals that of human musicians. Since none of the apes have this complex human-like capability, the discovery poses a big problem for the evolutionary model of human origins.



Magic Words Can't Explain Strange Fossil

‎Monday, ‎October ‎17, ‎2016, ‏‎10:00:00 AMGo to full article

Once upon a time, only a single Italian fossil—a crushed specimen that paleontologists had to reconstruct—represented the extinct reptile Drepanosaurus. Now, a team of American scientists described a new Drepanosaurus specimen from New Mexico. Instead of fingers, it had a massive claw on each hand, and its curling tail was claw-tipped. These features have evolutionists scratching their heads over where it came from and why it looks more like a particular living mammal than a reptile.



Codon Degeneracy Discredited Again

‎Thursday, ‎October ‎13, ‎2016, ‏‎10:00:00 AMGo to full article

One of the main themes of evolution is the belief that certain types of DNA sequences freely mutate and develop new functions that evolve creatures. This mostly mythical concept was applied to the protein-coding regions of genes, but in recent years this idea was discredited by the discovery of multiple codes imbedded in the same sequence—because the disruption of these codes is typically harmful, mutations are not tolerated. And now another critical imbedded code was discovered, further discrediting the idea of pervasive mutable DNA in genes.




Creation Geology [Podcast]

‎Monday, ‎October ‎10, ‎2016, ‏‎10:00:00 AMGo to full article

Can we believe both the Bible and geology? ICR geologist and Research Associate Dr. Tim Clarey uncovers how both fit together in this 5-part podcast series on creation geology. Dr. Clarey shares a unique geological perspective on the worldwide Flood, the origin and demise of dinosaurs, and the ice age.




Out-of-Place Dome-Headed Reptile

‎Thursday, ‎October ‎6, ‎2016, ‏‎10:00:00 AMGo to full article

An American research team recently reanalyzed a strange fossil the Works Progress Administration excavated in 1940 from the Triassic Otis Chalk in west Texas. This partial skull showed that the animal had a huge, thick dome on its head, much like pachycephalosaurs found in Cretaceous deposits. According to conventional consensus, 100 million years and a vicious extinction event separate the two fossil types. What role did an evolutionary perspective play in this team's conclusions about this supposedly out-of-place dome-headed fossil?



Scales, Colors, Proteins in Dinosaur Skin

‎Monday, ‎October ‎3, ‎2016, ‏‎10:00:00 AMGo to full article

Scientists mapped the color shading of a particularly well-preserved Chinese fossil—a Psittacosaurus [sit uh kuh SAWR us]—onto several three-dimensional, lifelike models of the dinosaur. They discovered that the extent of lighter areas on its belly matched that of today's animals that live in shaded areas, like beneath trees, as opposed to open plains. In the process, the researchers confirmed pigment and protein remnants in the fossil skin that should have decayed long ago if they were really millions of years old.



Cellular Evolution Debunked by Evolutionists

‎Thursday, ‎September ‎29, ‎2016, ‏‎10:00:00 AMGo to full article

Perhaps the greatest problem for evolution is where and how the first biomolecules and cells originated by means of random processes. And if that problem wasn't substantial enough—essentially statistically and biologically impossible—a new discovery makes the odds even worse. Colonies of complex fossil microbes have recently been found that allegedly push the origin of life to at least 3.7 billion years into the past—a period of time thought to be unfavorable for life to begin.




Gorillas, Endangerment, and Evolutionary Morality

‎Monday, ‎September ‎26, ‎2016, ‏‎10:00:00 AMGo to full article

The International Union for Conservation of Nature (IUCN) revealed their latest Red List of Threatened Species at their World Conservation Congress in Hawaii on September 4, 2016. There, thousands of scientists and celebrities discussed recently extinct plants and others nearing extinction, but the primate declines grabbed the headlines. Two of the three great-ape kinds are rapidly shrinking. Why should these losses sadden those concerned?



Creationist Worldview [Podcast]

‎Thursday, ‎September ‎22, ‎2016, ‏‎10:00:00 AMGo to full article

The Bible and science go together beautifully. ICR zoologist and researcher Frank Sherwin explains how in this 5-part podcast series on the creationist worldview. Mr. Sherwin shares the scientific and biblical evidence for a young earth, global Flood, and the origin of his favorite creatures—both living and extinct.



Archaeology Confirms Genesis, Job Climate

‎Tuesday, ‎September ‎20, ‎2016, ‏‎10:00:00 AMGo to full article

An international team of archaeologists examined animal and human remains from an ancient site in present-day Jordan that enjoyed wetter times in the distant past. Today's Azraq Oasis receives a mere trickle of water compared to its past flows. Several long-preserved clues from recent Azraq digs fit better into biblical history than with evolutionary ideas.



ICR Discovery Center for Science and Earth History

‎Friday, ‎September ‎16, ‎2016, ‏‎10:00:00 AMGo to full article

ICR hopes to soon begin building the Discovery Center for Science and Earth History. It will combine cutting-edge science and technology for an immersive experience that showcases God’s handiwork throughout the universe. Can you imagine how many lives will be changed?



New Calculations Melt Old Ice Age Theory

‎Wednesday, ‎September ‎14, ‎2016, ‏‎10:00:00 AMGo to full article

Recent ICR research has yielded convincing evidence that the results of an iconic climate/paleoclimate paper have been largely invalid—even by secular scientists' own reckoning—for the last 25 years. Moreover, most climate and paleoclimate scientists seem to be completely unaware of this fact.




Wild Carp Rapidly Regrow Scales

‎Monday, ‎September ‎12, ‎2016, ‏‎10:00:00 AMGo to full article

Back in the 1800s, Europeans bred carp until the breeders crafted a small population that lost all its scales. In 1912 some of these scale-free carp were transported to Madagascar, which had no native carp populations. Within a few decades some of the carp escaped and colonized natural Madagascar waters. Then, remarkably, some fish re-grew the scales their captive ancestors had completely lost. How did this happen?



Denton Bible Church Unlocks the Mysteries of Genesis

‎Friday, ‎September ‎9, ‎2016, ‏‎10:00:00 AMGo to full article

Eager churchgoers entering Denton Bible Church on a late summer Sunday were greeted by the toothy grins of extinct dragons. Why would a church display giant dinosaur fossils and offer an education series on these “mythical” monsters?




Life from an 'RNA World'?

‎Tuesday, ‎September ‎6, ‎2016, ‏‎10:00:00 AMGo to full article

A new study reports evidence that life may have begun with the help of an RNA enzyme called a ribozyme. However, instead of supporting the naturalistic origin of life, this recent research only serves to reemphasize how even the modification of pre-existing information toward a specific purpose requires immense levels of ingenuity, engineering, and expertise.



Population Growth

‎Monday, ‎August ‎29, ‎2016, ‏‎10:00:00 AMGo to full article

In 2011, the world’s human population reached seven billion. How long did it take for this many humans to be born?



The Case of the Missing Fulgurites

‎Thursday, ‎August ‎25, ‎2016, ‏‎10:00:00 AMGo to full article

Fulgurites are fossilized lightning strikes. Physicist Don DeYoung wrote that after 4.6 billion years, at the current lightning-strike rate, every square meter of land should contain far more fossilized lightning strikes than it can even hold. New fulgurite research updates the numbers to bring this fulgurite problem into sharper focus.



Creation Apologetics [Podcast]

‎Monday, ‎August ‎22, ‎2016, ‏‎10:00:00 AMGo to full article

Does Genesis really matter? How can we know the true timescale of creation or the age of the universe? And what should Christians do when they spot logical fallacies in conversations with skeptics? ICR astrophysicist Dr. Jason Lisle delves into these questions and more, offering several biblical and scientific arguments to logically defend the Christian faith.


Fossil DNA in Deep Seafloor Mud

‎Thursday, ‎August ‎18, ‎2016, ‏‎10:00:00 AMGo to full article

Scientists found DNA in sediment drill cores from the Bering Sea, hundreds of meters beneath the seafloor surface. Secular scientists insist that sediments at that depth required at least hundreds of thousands of years to deposit. Given that DNA degrades relatively quickly, the team faced the challenge of explaining how DNA could persist long enough to get buried beneath that much sediment.



New Dual-Function Brain Cell Found

‎Monday, ‎August ‎15, ‎2016, ‏‎10:00:00 AMGo to full article

Until 2015, anatomy textbooks taught that the human immune system doesn't penetrate brain tissue. But that same year, University of Virginia neuroscientist Jonathan Kipnis and his team discovered immune system cells working in the brain. The team's 2016 research revealed an unexpected additional role for molecules previously known only to target invading cells. They then speculated on ways this strange situation may have evolved.



Six Days of Creation, Part 1 [Podcast]

‎Thursday, ‎July ‎14, ‎2016, ‏‎10:00:00 AMGo to full article

The book of Genesis lays the groundwork for the Christian belief system. It is the foundation of everything that God has undertaken on behalf of humanity. Therefore, we need a correct understanding of Genesis in order to correctly understand our identity, our responsibility, and our future. Should we treat the Genesis account as historical fact? Should we believe in a literal creation? What does Genesis say about what and how God created?



Stunning Amber Bird Wings

‎Monday, ‎July ‎11, ‎2016, ‏‎10:00:00 AMGo to full article

Newly described bird wings—not just a single feather or a strange-looking fiber or two—rose to the top of a long list of spectacular amber-trapped fossils. Two tiny hatchlings may have seen dinosaurs just before their wings got trapped in fast-flowing tree resin. At least four waves of the magic evolutionary wand would be needed to shove these unique fossils into deep time.



Convergent Evolution or Design-Based Adaptation?

‎Thursday, ‎July ‎7, ‎2016, ‏‎10:00:00 AMGo to full article

Convergent evolution is the idea that the same trait, or set of traits, in completely different organisms were somehow produced through independent evolutionary processes. Now a new study shows how two different types of snakes have adapted to a diversity of environments by expressing the same traits (skin color and skull shape), but the study describes no mechanism for it. The authors simply attribute the highly repeatable process to the black box of convergent evolution.



The Seeing Eye

‎Tuesday, ‎July ‎5, ‎2016, ‏‎10:00:00 AMGo to full article

Great photographers pair a select lens to a sophisticated camera and then adjust shutter speed and aperture size to capture the perfect photo. Our eyes perform similar tasks but are precisely engineered better than any camera—and their components are vastly more sophisticated. Could the seeing eye have been made by time and chance?



Videoconference with ISS Commander

‎Wednesday, ‎June ‎29, ‎2016, ‏‎10:00:00 AMGo to full article

The Institute for Creation Research had the special privilege of videoconferencing with ISS Commander Col. Jeff Williams. He has occasional video-time with family and friends, and he graciously offered a question and answer session to the Dallas ICR staff while his wife, Anna-Marie, listened in from Houston. His responses give us a unique look into his heart.



Urban Trees Point to Creation

‎Monday, ‎June ‎27, ‎2016, ‏‎10:00:00 AMGo to full article

A recent U.S. Forest Service study estimated that the trees planted along California streets provide a billion dollars’ worth of human benefit each year. And that benefit comes cheap. This analysis reveals five tree-related benefits that identify where trees fit in the origins controversy.



Scientific Evidence for Creation [Podcast]

‎Thursday, ‎June ‎23, ‎2016, ‏‎10:00:00 AMGo to full article

Science and the Bible agree. ICR zoologist and Research Associate Frank Sherwin tells us how in this 5-part podcast series on the scientific evidence for creation. From submicroscopic machines to the mighty oceans, Frank explores the marvels of design, buried clues from the past, and the myth of human evolution.



Neuron-Packed Bird Brains Point to Creation

‎Monday, ‎June ‎20, ‎2016, ‏‎10:00:00 AMGo to full article

The amazing ability of birds to achieve ape-level cognitive traits—and in some cases exceed them like when they emulate human speech—has long confounded the evolutionary paradigm that claims humans evolved from apes. Now the bird intelligence evolutionary quandary has worsened as described in a new research report that shows bird brains contain over twice as many neurons per unit area as ape brains.



Special Cells Help Brain and Gut Communicate

‎Thursday, ‎June ‎16, ‎2016, ‏‎10:00:00 AMGo to full article

After investing so much time and effort to understand how all parts of the human body interact, scientists keep turning up new and unforeseen connections—often when they ask the right questions. New and strange developments inspired a team to ask wacky questions about a unique white blood cell called Ly6Chi. And they found some profound answers.



Five Reasons to Believe in Recent Creation [Podcast]

‎Monday, ‎June ‎13, ‎2016, ‏‎10:00:00 AMGo to full article

Should we read the Genesis creation account as literal and inspired history, or is it simply a symbolic framework that should be adapted to the most popular scientific theories? Sadly, a growing number of Christian leaders accept evolution as fact and try to harmonize the Bible with the concept of naturalistic development over countless eons. Dr. Henry Morris III offers five fundamental reasons why belief in a recent creation is not only feasible, but vital to a true understanding of God’s Word.



Is Chimp Grief Evidence of Evolution?

‎Thursday, ‎June ‎9, ‎2016, ‏‎10:00:00 AMGo to full article

As genetic research moves forward, the similarity between humans and chimpanzees becomes more and more distant—well beyond the bounds of evolutionary probability. But the secular world appears determined to show how chimps can behave similar to humans to bolster the failing evolutionary story. The most recent media buzz centers on several articles in which chimps are shown grieving over their dearly departed comrades.



Seagrass Re-evolution

‎Monday, ‎June ‎6, ‎2016, ‏‎10:00:00 AMGo to full article

Biologists recently sequenced the seagrass genome. They claim, "Uniquely, Z. marina has re-evolved new combinations of structural traits related to the cell wall." Re-evolved? There is no scientific reason—no empirical evidence—to say the structural traits somehow "re-evolved." How can these scientists make such a statement?



ICR Discovery Center: Expanding Creation Ministry

‎Thursday, ‎June ‎2, ‎2016, ‏‎10:00:00 AMGo to full article

Physicist Dr. Jake Hebert explains how the discovery center will enhance and expand ICR’s impact beyond its current media outlets and publications.



Junk DNA…Trashed Again

‎Thursday, ‎May ‎26, ‎2016, ‏‎10:00:00 AMGo to full article

Repetitious "words" in DNA represent more than half of the human genome's three billion nucleotides. Because human reasoning essentially views the repetition of words in spoken languages as errors, these DNA sequences were first written off as meaningless junk. Now it appears nothing could be further from the truth since these repetitive words are linked with pervasive biochemical function.



ICR Discovery Center: Impacting Hearts and Minds

‎Monday, ‎May ‎23, ‎2016, ‏‎10:00:00 AMGo to full article

Science Writer Brian Thomas tells how creation evidence changed his beliefs about God and Scripture—and ultimately the course of his life! ICR’s discovery center has the potential to reach so many more with this same life-changing message.



Titanic Remake More like Noah's Ark

‎Thursday, ‎May ‎19, ‎2016, ‏‎10:00:00 AMGo to full article

The Titanic's sinking on April 14, 1912 was the most famous seafaring disaster in modern times. But the survival of Noah's Ark in the Flood was the most famous seafaring success in ancient times. Did design specifications help make the difference? If so, that might help explain why the dimensions for Titanic II—a planned full-size replica luxury liner—will differ from the first Titanic.



New DNA Study Confirms Noah

‎Monday, ‎May ‎16, ‎2016, ‏‎10:00:00 AMGo to full article

Evolutionary teachings hold that all mankind arose from a population of ape-like ancestors. But Genesis, the rest of the Bible, and Jesus teach that mankind arose from Noah's three sons and their wives. A new analysis of human mitochondrial DNA exposes two new evidences that validate the biblical beginnings of mankind.



ICR Discovery Center: Encouraging Believers

‎Thursday, ‎May ‎12, ‎2016, ‏‎10:00:00 AMGo to full article

With engaging exhibits and a 3-D planetarium, ICR’s discovery center will show how scientific evidence confirms the Bible.  We want this project to encourage Christian believers that God’s Word can be trusted and  to equip them to defend their Christian faith.



Organic Residue Is 247 Million Years Old?

‎Monday, ‎May ‎9, ‎2016, ‏‎10:00:00 AMGo to full article

Those who have difficulty accepting reports of collagen (a type of protein) preserved in supposedly 80-million-year-old dinosaur bones will scratch their heads with new vigor over a recent report. Supposedly 247-million-year-old fossils from Poland show signs of excellent preservation and even hold blood vessels.



Wall-Climbing Cave Fish: Evolutionary Intermediate?

‎Thursday, ‎May ‎5, ‎2016, ‏‎10:00:00 AMGo to full article

Scientists recently discovered another bizarre fish. This one has a pelvic girdle. Is it the missing link evolutionists have been searching for?



ICR Discovery Center: Confirming Genesis

‎Monday, ‎May ‎2, ‎2016, ‏‎10:00:00 AMGo to full article

Genesis lays the foundation for every other book of the Bible, and it’s continually under attack. ICR’s discovery center will feature evidence demonstrating that all of the Bible—from beginning to end—can be trusted as God’s inspired Word.



Big Bang Continues to Self-Destruct

‎Monday, ‎April ‎25, ‎2016, ‏‎10:00:00 AMGo to full article

In modern cosmology, one of the most important numbers is the current value of the so-called "Hubble parameter." This number indicates the apparent expansion rate of the universe. A new study indicates that two different methods of estimating this number yield contradictory results.



Iron-mining Fungus Displays Surprising Design

‎Thursday, ‎April ‎21, ‎2016, ‏‎10:00:00 AMGo to full article

What happens when a soil fungus runs into a hard mineral containing precious trace amounts of nutritious iron? A poorly designed fungus might go hungry and languish like a forlorn noodle, but researchers recently found ways that a soil fungus conducts a miniature mining operation.



Monkey Business in the New Gorilla Genome

‎Monday, ‎April ‎18, ‎2016, ‏‎10:00:00 AMGo to full article

Old evolutionary assumptions seem hard to break. The recent assembling of ape DNA sequences based on the human genome provides a good example. This new gorilla genome study, despite capitalizing on advanced DNA sequencing technology, suffers from the same old malady.



ICR Discovery Center: Trusting God's Word

‎Thursday, ‎April ‎14, ‎2016, ‏‎10:00:00 AMGo to full article

Why is ICR building the new discovery center? Because the next generation needs to know that God’s Word can be trusted on all matters—including science.



Amber-Encased Lizards Showcase Recent Creation

‎Monday, ‎April ‎11, ‎2016, ‏‎10:00:00 AMGo to full article

Publishing online in Science Advances, a team of zoologists recognized familiar lizard forms in a dozen amber-encased lizard specimens. What did these lizards look like when they crawled around dinosaur feet? These Burmese ambers clearly show the answer.



ICR Discovery Center: Explaining the Scientific Method

‎Thursday, ‎April ‎7, ‎2016, ‏‎10:00:00 AMGo to full article

Drs. Jason Lisle and Jake Hebert talk about the scientific method in light of Scripture, evolutionary claims, and ICR’s biggest project yet.



Viral Genome Junk Hits the Trash

‎Monday, ‎April ‎4, ‎2016, ‏‎10:00:00 AMGo to full article

Evolutionists have long claimed that human chromosomes were infected with many different viruses over millions of years, which then multiplied in the genome. Then, as some of these sections of virus-like DNA were shown to be functional, evolutionists claimed they had become "tamed" like the domestication of wild animals. When virus-like DNA were first discovered, it was thought the majority of them would prove to be junk—until now.



Tyrannosaur Ancestral Tree Remains Limbless

‎Monday, ‎March ‎28, ‎2016, ‏‎10:00:00 AMGo to full article

Since Darwin's time, the lack of fossil evidence for vertical evolution has always been a problem for secular scientists. Now a recent paper published online in Scientific Reports attempts to map the ancestry of tyrannosaurs. Does it point us in the right direction?



ICR Discovery Center: Telling the Truth

‎Thursday, ‎March ‎24, ‎2016, ‏‎10:00:00 AMGo to full article

Why does ICR need to build this discovery center? Astrophysicist Dr. Jason Lisle describes what this ground-breaking project will accomplish and why it matters.



Evolutionary Tyranny Still Casts Cloud Over Science

‎Monday, ‎March ‎21, ‎2016, ‏‎10:00:00 AMGo to full article

A recent scientific paper published in the high-profile journal PLOS ONE made three separate references to the amazing design of the human hand…and rightly attributed them to the Creator. Evolutionists cried foul and raised such an uproar that the journal retracted the paper. Why?



ICR Discovery Center: Revealing Creation Evidence

‎Thursday, ‎March ‎17, ‎2016, ‏‎10:00:00 AMGo to full article

What kind of creation evidence can ICR reveal in the new museum? Science Writer Brian Thomas shares a few fascinating facts that refute evolution and confirm the authenticity of the Genesis account.



Tooth Study Takes Bite Out of Evolution

‎Monday, ‎March ‎14, ‎2016, ‏‎10:00:00 AMGo to full article

Secular scientists have told incredible stories for over a century about how fossil teeth supposedly support the idea that humans evolved from primates. A lack of knowledge about tooth development has provided fertile ground for wild speculations about evolving tooth sizes, skull shapes, foot shapes, and even life habits. A new report changes all that conjecture.



ICR Discovery Center: Equipping Believers

‎Thursday, ‎March ‎10, ‎2016, ‏‎10:00:00 AMGo to full article

“Always be ready to give a defense to everyone who asks you a reason for the hope that is in you” (1 Peter 3:15). Physicist Dr. Jake Hebert tells how ICR’s museum can equip you to defend your Christian faith.



China Spends Millions Searching for Aliens

‎Monday, ‎March ‎7, ‎2016, ‏‎10:00:00 AMGo to full article

China is spending almost 200 million dollars on an enormous radio antenna to listen for signs of alien intelligence. In the western hemisphere, millions of dollars were invested in the Search for Extraterrestrial Intelligence Institute (SETI) project but have turned up no evidence. The ever-growing number of barren and gaseous exoplanets discovered continues to elevate Earth's uniqueness. Apparently, China would love to be the first nation to make "first contact."



ICR Discovery Center: Impacting Lives for the Gospel

‎Thursday, ‎March ‎3, ‎2016, ‏‎10:00:00 AMGo to full article

Two-thirds of the children raised in conservative Christian families leave the church in disbelief by the time they get to college. Find out how ICR’s museum project can influence our culture, point people to God’s Word, and encourage them to respond with faith in Him.



ICR Discovery Center: It's Okay to Ask Dinosaur Questions

‎Friday, ‎February ‎26, ‎2016, ‏‎10:00:00 AMGo to full article

Brian Thomas shares how the ICR Discovery Center for Science and Earth History can impact the faith of countless people by giving solid answers to their creation questions.



Were Sauropods Wading in China?

‎Thursday, ‎February ‎25, ‎2016, ‏‎10:00:00 AMGo to full article

It's tough to beat a genuine dinosaur trackway for a fascinating glimpse of ancient life. Among the frozen tracks of giant, four-footed sauropod dinosaurs like Apatosaurus now frozen in stone, most preserve both hind feet and "hands"—or in tech speak, the "pes" and "manus." But newly exposed tracks from Gansu Province in northern China have experts scrabbling to explain why they only preserve sauropod hind feet.



Octopus Genome as Large as Human Genome

‎Monday, ‎February ‎22, ‎2016, ‏‎10:00:00 AMGo to full article

The amazing octopus continues to astonish scientists. "Octopuses are highly intelligent creatures," says Claire Little, a marine biologist at the Weymouth Sealife Center in southwest England. "They are classed as intelligent as the general home pet dog." Scientists recently sequenced the octopus' genome and found it's nearly the size of the human genome.



Delicate Silk Fossils Point to Creation

‎Friday, ‎February ‎19, ‎2016, ‏‎10:00:00 AMGo to full article

Numerous amazing fossils supposedly millions of years old contain original, non-mineralized biomolecules like collagen, elastin, ovalbumin, DNA, laminin, melanin, hemoglobin, and chitin. A new study presents evidence suggesting this list should now include silk.




Scientific American Content: Global




Browse and Search NASA Image Galleries




PRICE R 159.00






Transhumanism is an international intellectual and cultural movement supporting the use of science and technology to improve human mental and physical characteristics and capacities.

by Dr. Martin Erdmann

The human species can, if it wishes, transcend itself. We need a name for this new belief. Perhaps transhumanism will serve: man remaining man, but transcending himself, by realizing new possibilities of and for his human nature.
Julian Huxley
1st director of the United Nations Educational, Scientific and Cultural Organization (UNESCO) (wrote nearly fifty years ago)
Transhumanism is a word that is beginning to bubble to the top of our prophetic studies and horizon. Simply described, transhumanism is an international intellectual and cultural movement supporting the use of science and technology to improve human mental and physical characteristics and capacities - in essence, to create a "posthuman" society.
This is not a passing fad. Transhumanist programs are sponsored in institutions such as Oxford, Standford, and Caltech. Sponsorships come from organizations such as Ford, Apple, Intel, Xerox, Sun Microsystems, and others. DARPA, Defense Advanced Research Projects Agency, a technical department within the U.S. Department of Defense is also involved in transhumanist projects.
This briefing pack contains 2 hours of teachings
Available in the following formats
1 Disc
2 M4A Files

More Info



Price R 159.00




DVD - R 159.00




Book   R169.00




Available in the following formats:
Price R 159.00

All prices are in South African Rand's.



The Origins of Information: Exploring and Explaining Biological Information


In the 21st century, the information age has finally come to biology. We now know that biology at its root is comprised of information rich systems, such as the complex digital code encoded in DNA. Groundbreaking discoveries of the past decade are revealing the information bearing properties of biological systems.

Dr. Stephen C. Meyer, a Cambridge trained philosopher of science is examining and explaining the amazing depth of digital technology found in each and every living cell such as nested coding, digital processing, distributive retrieval and storage systems, and genomic operating systems.

Meyer is developing a more fundamental argument for intelligent design that is based not on a single feature like the bacterial flagellum, but rather on a pervasive feature of all living systems. Alongside matter and energy, Dr. Meyer shows that there is a third fundamental entity in the universe needed for life: information.



Got Science? Genesis 1 and Evidence



DVD - R159.00


Many scientists say complex life just randomly happened.
Primordial soup + lightning strike = Bingo! Is there any shred of scientific evidence that life was CREATED as Genesis 1 claims? Dr. Stephen Meyer, author of SIGNATURE IN THE CELL, says not a shred. Rather, a ton. Learn good reasoning techniques here.
08 June 2012, 08:09:11 PM

Intelligent Design is not Creationism

08 June 2012, 08:09:11 PM | Robert CrowtherGo to full article

This article was originally published in the Daily Telegraph (UK) on January 29. Original Article In 2004, the distinguished philosopher Antony Flew of the University of Reading made worldwide news when he repudiated a lifelong commitment to atheism and affirmed the reality of some kind of a creator. Flew cited evidence of intelligent design in DNA and the arguments of "American [intelligent] design theorists" as important reasons for this shift. Since then, British readers have learnt about the theory of intelligent design (ID) mainly from media reports about United States court battles over the legality of teaching students about it. According to most reports, ID is a "faith-based" alternative to evolution based solely on religion. But is this accurate? As one of the architects of the theory, I know it isn't. Contrary to media reports, ID is not a religious-based idea, but an evidence-based scientific theory about life's origins. According to Darwinian biologists such as Oxford University's Richard Dawkins, living systems "give the appearance of having been designed for a purpose". But, for modern Darwinists, that appearance of design is illusory, because the purely undirected process of natural selection acting on random mutations is entirely sufficient to produce the intricate designed-like structures found in living organisms. By contrast, ID holds that there are tell-tale features of living systems and the universe that are best explained by a designing intelligence. The theory does not challenge the idea of evolution defined as change over time, or even common ancestry, but it disputes Darwin's idea that the cause of biological change is wholly blind and undirected. What signs of intelligence do design advocates see? In recent years, biologists have discovered an exquisite world of nanotechnology within living cells - complex circuits, sliding clamps, energy-generating turbines and miniature machines. For example, bacterial cells are propelled by rotary engines called flagellar motors that rotate at 100,000rpm. These engines look like they were designed by engineers, with many distinct mechanical parts (made of proteins), including rotors, stators, O-rings, bushings, U-joints and drive shafts. The biochemist Michael Behe points out that the flagellar motor depends on the co-ordinated function of 30 protein parts. Remove one of these proteins and the rotary motor doesn't work. The motor is, in Behe's words, "irreducibly complex". This creates a problem for the Darwinian mechanism. Natural selection preserves or "selects" functional advantages as they arise by random mutation. Yet the flagellar motor does not function unless all its 30 parts are present. Thus, natural selection can "select" the motor once it has arisen as a functioning whole, but it cannot produce the motor in a step-by-step Darwinian fashion. Natural selection purportedly builds complex systems from simpler structures by preserving a series of intermediates, each of which must perform some function. With the flagellar motor, most of the critical intermediate structures perform no function for selection to preserve. This leaves the origin of the flagellar motor unexplained by the mechanism - natural selection - that Darwin specifically proposed to replace the design hypothesis. Is there a better explanation? Based on our uniform experience, we know of only one type of cause that produces irreducibly complex systems: intelligence. Whenever we encounter complex systems - whether integrated circuits or internal combustion engines - and we know how they arose, invariably a designing intelligence played a role. Consider an even more fundamental argument for design. In 1953, when Watson and Crick elucidated the structure of the DNA molecule, they made a startling discovery. Strings of precisely sequenced chemicals called nucleotides in DNA store and transmit the assembly instructions - the information - in a four-character digital code for building the protein molecules the cell needs to survive. Crick then developed his "sequence hypothesis", in which the chemical bases in DNA function like letters in a written language or symbols in a computer code. As Dawkins has noted, "the machine code of the genes is uncannily computer-like". The informational features of the cell at least appear designed. Yet, to date, no theory of undirected chemical evolution has explained the origin of the digital information needed to build the first living cell. Why? There is simply too much information in the cell to be explained by chance alone. The information in DNA (and RNA) has also been shown to defy explanation by forces of chemical necessity. Saying otherwise would be like saying a headline arose as the result of chemical attraction between ink and paper. Clearly, something else is at work. DNA functions like a software program. We know from experience that software comes from programmers. We know that information - whether, say, in hieroglyphics or radio signals - always arises from an intelligent source. As the pioneering information theorist Henry Quastler observed: "Information habitually arises from conscious activity." So the discovery of digital information in DNA provides strong grounds for inferring that intelligence played a causal role in its origin. Thus, ID is not based on religion, but on scientific discoveries and our experience of cause and effect, the basis of all scientific reasoning about the past. Unlike creationism, ID is an inference from biological data. Even so, ID may provide support for theistic belief. But that is not grounds for dismissing it. Those who do confuse the evidence for the theory with its possible implications. Many astrophysicists initially rejected the Big Bang theory because it seemed to point to the need for a transcendent cause of matter, space and time. But science eventually accepted it because the evidence strongly supported it. Today, a similar prejudice confronts ID. Nevertheless, this new theory must also be evaluated on the basis of the evidence, not philosophical preferences. As Professor Flew advises: "We must follow the evidence, wherever it leads." Stephen C Meyer edited 'Darwinism, Design and Public Education' (Michigan State University Press). He has a PhD in philosophy of science from Cambridge University and is a senior fellow at the Discovery Institute in Seattle.


09 December 2011, 11:13:24 PM

New Research Supports Meyer's Discussion of Pre-Biotic Chemistry in Signature in the Cell

09 December 2011, 11:13:24 PM | Andrew McDiarmidGo to full article
A recent Nature publication reports a new technique for measuring the oxygen levels in Earth's atmosphere some 4.4 billion years ago. The authors found that by studying cerium oxidation states in zircon, a compound formed from volcanic magma, they could ascertain the oxidation levels in the early earth. Their findings suggest that the early Earth's oxygen levels were very close to current levels. This research supports Dr. Meyer's discussion in Signature in the Cell. On pgs. 224-226 of Ch. 10: Beyond the Reach of Chance, Meyer states that when Stanley Miller conducted his famous 1953 experiment simulating early Earth's atmosphere, he "assumed that the earth's atmosphere contained virtually no free oxygen." Meyer reveals that new geochemical evidence showed that the assumptions Miller had made about the early atmosphere were incorrect. This new research is additional confirmation that oxygen was present in significant quantities. Because oxygen quenches organic reactions necessary to produce essential building blocks of life, the ability of inorganic materials to produce organic life, as chemical evolutionary theory assumes, is not possible. Read the complete article at ENV.


Dr. Meyer Debates Signature in the Cell Arguments with Keith Fox on Premier Radio UK

24 November 2011, 12:37:19 AM | Andrew McDiarmidGo to full article
During a recent visit to London, Dr. Stephen Meyer debated Keith Fox on Premier Radio UK's "Unbelievable" program. Fox is a professor of biochemistry at Southampton University and Chair of the UK's Christians in Science network. Two years after its publication, Meyer's Signature in the Cell continues to make an impact with its powerful argument for design in DNA. In this lively conversation, Meyer and Fox discuss origins of life and the design inference in science.


« Overflowtoday.com asks Stephen Meyer if he's got science | Main

Dr. Meyer Debates Signature in the Cell Arguments with Keith Fox on Premier Radio UK

During a recent visit to London, Dr. Stephen Meyer debated Keith Fox on Premier Radio UK's "Unbelievable" program. Fox is a professor of biochemistry at Southampton University and Chair of the UK's Christians in Science network. Two years after its publication, Meyer's Signature in the Cell continues to make an impact with its powerful argument for design in DNA. In this lively conversation, Meyer and Fox discuss origins of life and the design inference in science.



Searching For The Truth On Origins
By Roger Oakland

4 DVD set







PRICE  R399.00


 ($49.00) equivalent








NASA Television



+27 11 969 0086







Featured Commentaries

Learn the Bible

 in 24 hours

Old Testament






Joshua and The Twelve Tribes


Ruth and Esther

I and II Samuel

I and II Kings

I and II Chronicles

Ezra & Nehemiah





Song of Songs







Joel and Amos

Jonah, Nahum & Obadiah



The Minor



New Testament







I & II Corinthians




Colossians and Philemon

I and II






I and II Peter

I, II, and III John