“Bringing the world into focus
through the lens of Scripture”

frosty@khouseafrica.com

 

 

 

K-House Africa

 

Banking Details

 

Radio 66/40

 

 

 

 Africa news

 

THE STRUGGLE FOR JERUSALEM

 

 

The Rise Of Islam

 

 

THE DECLINE OF THE USA

 

 

GLOBAL RELIGION

 

 

GLOBAL PESTILENCE

 

 

Global Government

 

 

THE RISE OF THE FAR EAST

 

 

THE RISE OF THE EUROPEAN SUPER STATE

 

 

WEAPONS PROLIFERATION

 

 

THE MAGOG INVASION

 

 

Space & Science

Classics

 

 

UNDERSTAND THE TIMES

 

 

 

Articles

 

DVD PRICELIST

 

Price List

 

 Kings High Way Briefing Packs

 

Topical Teachings

DVD Briefing Back

Packs

 

Audio CD

 

Audio MP3 Collections

 

DVD

 Commentaries

 

Strategic Trends

 

Verse By Verse Commentaries

 

Old Testament Study Notes

 

New Testament Study Notes

 

Personal Update

 

Donations

 

New Product Notice

 

FAQ

 

Contact US

 

K-House USA

 

Comment Line

 

Time Traveller

 

Other Links

 

DEVOTIONAL

 

Words in Red

 

Prophecy News Watch

 

The Coming Prince

 

THE WITNESS 1 Audio MP3

 

THE WITNESS 2 Audio MP3

 

hawk warrior

 

 

 

 

 

 

INTERNATIONAL NEWS FEEDS


 In The News provided by Koinonia House


Best viewed with Internet Explorer.


 

 

This page is dedicated to My Grandson Brandon.

(Branstein)

***IN STOCK***
 HOLOGRAPHIC

UNIVERSE

by Chuck Missler

DVD

PRICE R 159.00

 

 

 

 

This DVD includes notes in PDF format and M4A files.


This briefing pack contains 2 hours of teachings

Available in the following formats

Session 1

• Epistemology 101: How do we “know”?

– Scientific Myths of the Past

– Scientific Myths of the Present

• The Macrocosm: The Plasma Universe: Gravitational Presumption?

• The Microcosm: The Planck Wall

• The Metacosm: Fracture of Hyperspace?

Session 2


• The Holographic Model: David Bohm

• GEO 600 “Noise”

• The Black Hole Paradox

– String Theorists examine the elephant

• A Holographic Universe:

– Distances are synthetic (virtual) images

– A Geocentric Cosmology?

– Some Scriptural Perspective(s)

 

 

“One can’t believe impossible things,”

Alice laughed.

“I daresay you haven’t had much practice,”

said the Queen.

“When I was your age, I always did it for

half-an-hour a day.

Why, sometimes I’ve believed as many

as six impossible things before breakfast.”

Through the Looking Glass

Lewis Carroll (Charles Lutwidge Dodgson)
 

DVD:

1 Disc
2 M4A Files
Color, Fullscreen 16:9, Dolby Digital 2.0 stereo, Region  This DVD will be viewable in other countries WITH the proper DVD player and television set.)
 

M4A File Video

Can be burned to disc and played on MP4 compatible DVD players.
Playable on iPod, iPhone, iPod Touch
Playable on any MP4 player
1 PDF Notes File
2 MP3 Files


 

 

 

 

 

   

Featured Briefing

A Holographic Universe?

by Dr. Chuck Missler

Are we actually living in a holographic universe? Are the distant galaxies only a virtual illusion? In a hologram, distances are synthetic! How does this impact our concepts of time and space?

There seems to be growing evidence to suggest that our world and everything in it may be only ghostly images, projections from a level of reality so beyond our own that the real reality is literally beyond both space and time.1

The Cosmos As a Super-Hologram?

An initiating architect of this astonishing idea was one of the world’s most eminent thinkers: University of London physicist David Bohm, a protégé of Einstein’s and one of the world’s most respected quantum physicists. Bohm’s work in plasma physics in the 1950s is considered a landmark. Earlier, at the Lawrence Radiation Laboratory, he noticed that in plasmas (ionized gases) the particles stopped behaving as individuals and started behaving as if they were part of a larger and interconnected whole. Moving to Princeton University in 1947, there, too, he continued his work in the behavior of oceans of ionized particles, noting their highly organized overall effects and their behavior, as if they knew what each of the untold trillions of individual particles was doing.

One of the implications of Bohm’s view has to do with the nature of location. Bohm’s interpretation of quantum physics indicated that at the subquantum level location ceased to exist. All points in space become equal to all other points in space, and it was meaningless to speak of anything as being separate from anything else. Physicists call this property “nonlocality”. The web of subatomic particles that compose our physical universe—the very fabric of “reality” itself—possesses what appears to be an undeniable “holographic” property. Paul Davis of the University of Newcastle upon Tyne, England, observed that since all particles are continually interacting and separating, “the nonlocal aspects of quantum systems is therefore a general property of nature.”2

The Nature of Reality

One of Bohm’s most startling suggestions was that the tangible reality of our everyday lives is really a kind of illusion, like a holographic image. Underlying it is a deeper order of existence, a vast and more primary level of reality that gives birth to all the objects and appearances of our physical world in much the same way that a piece of holographic film gives birth to a hologram. Bohm calls this deeper level of reality the implicate (“enfolded”) order and he refers to our level of existence the explicate (unfolded) order.3 This view is not inconsistent with the Biblical presentation of the physical (“explicate”) world as being subordinate to the spiritual (“implicate”) world as the superior reality.4

The Search for Gravity Waves

Gravitational waves are extremely small ripples in the structure of spacetime caused by astrophysical events like supernovae or coalescing massive binaries (neutron stars, black holes). They had been predicted by Albert Einstein in 1916, but not yet directly observed.

GEO 600 is a gravitational wave detector located near Sarstedt, Germany, which seeks to detect gravitational waves by means of a laser interferometer of 600 meter arms’ length. This instrument, and its sister interferometric detectors, are some of the most sensitive gravitational wave detectors ever designed. They are designed to detect relative changes in distance of the order of 10-21, about the size of a single atom compared to the distance from the Earth to the Sun! Construction on the project began in 1995.

Mystery Noise

On January 15, 2009, it was reported in New Scientist that some yet unidentified noise that was present in the GEO 600 detector measurements might be because the instrument is sensitive to extremely small quantum fluctuations of space-time affecting the positions of parts of the detector. This claim was made by Craig Hogan, a scientist from Fermilab, on the basis of his theory of how such fluctuations should occur motivated by the holographic principle.5 Apparently, the gravitational wave detector in Hannover may have detected evidence for a holographic Universe!

Gravitational Wave Observatories Join Forces

A number of major projects will now pool their data to analyze it, jointly boosting their chances of spotting a faint signal that might otherwise be hidden by detector noise. Using lasers, they measure the length between mirrored test masses hung inside tunnels at right angles to each other. Gravitational waves decrease the distance between the masses in one tunnel and increase it in the other by a tiny, but detectable amount. Combining the data will also make it possible to triangulate to find the source of any gravitational waves detected. These include: Laser Interferometer Gravitational Observatory based in Hanford, Washington and Livingston, Louisiana; Virgo Observatory, Pisa Italy; and, of course, the GEO 600 Observatory near Hanover, Germany.

The most ambitious of them is the Laser Interferometer Space Antenna (LISA), a joint mission between NASA and the European Space Agency to develop and operate a space-based gravitational wave detector sensitive at frequencies between 0.03 mHz and 0.1 Hz. LISA seeks to detect gravitational-wave induced strains in space-time by measuring changes of the separation between fiducial masses in three spacecraft 5 million kilometers apart.

Cosmic Implications

Are we actually living in a holographic universe? Are the distant galaxies only a virtual illusion? In a hologram, distances are synthetic! How does this impact our concepts of time and space?

It gets even worse: Could our universe be geocentric? The implications are too staggering to embrace. The holographic paradigm is still a developing concept and riddled with controversies. For decades, science has chosen to ignore evidences that do not fit their standard theories. However, the volume of evidence has now reached the point that denial is no longer a viable option.

Clearly, 20th-century science has discovered that our “macrocosm”—studies of largeness—is finite, not infinite. Our universe is finite and had a beginning, and that’s what has led to the “big bang” speculations. We also realize that gravity is dramatically eclipsed by electromagnetic considerations when dealing with galaxies, etc. The plasma physicists have been trying to tell astronomers that for decades but no one was listening.

What is even more shocking has been the discoveries in the “microcosm”—studies of smallness—that run up against the “Planck Wall” of the non-location of subatomic particles, and the many strange paradoxes of quantum physics. We now discover that we are in a virtual reality that is a digital, simulated environment. The bizarre realization that the “constants” of physics are changing indicates that our “reality” is “but a shadow of a larger reality,”6 and that’s what the Bible has maintained all along!7

The Bible is, of course, unique in that it has always presented a universe of more than three dimensions,8 and revealed a Creator that is transcendent over His creation. It is the only “holy book” that demonstrates these contemporary insights. It’s time for us to spend more time with the handbook that the Creator has handed to us. It is the ultimate adventure, indeed!

For background information on the Holographic Universe, see our briefing series, The Beyond Collection, available on DVD and other formats, in the Christmas catalog insert in this issue.


Notes

  1. We explore the limitations of the Macrocosm, the Microcosm, and the super-embracing “Metacosm” in our Beyond Series.
  2. Paul Davis, Superforce, Simon & Schuster, New York, 1948, p.48.
  3. This is reminiscent of the Red King’s dream in Through the Looking Glass, in which Alice finds herself in deep metaphysical waters when the Tweedle brothers defend the view that all material objects, including ourselves, are only “sorts of things” in the mind of God.
  4. 2 Corinthians 4:18.
  5. Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. (Craig Hogan was then put in charge…)
  6. Scientific American, June 2005, “The Inconstancy of Constants”.
  7. Hebrews 11:3; John 1:1-3; et al.
  8. Ephesians 3:18. Nachmonides, writing in the 13th century, concluded, from his studies of the Genesis texts, that our universe has ten dimensions, of which only four are directly “knowable”.
 
 

The Physics of Immortality

DVD


by Dr. Chuck Missler

Price R 249.00

 

 

The Physics of Immortality

 This is an intensive review of what the Apostle Paul calls the most important chapter in the Bible: 1 Corinthians 15. Without it, “we are of all men most miserable.”
Did Jesus really rise from the dead? How do we know? Do we really believe it?
What kind of body did He have? Why did they have trouble recognizing Him?
How do we now know that we live within a digital virtual environment which is but “a shadow of a larger reality”? What are the implications of that “larger reality”? What is the relationship between “the twinkling of an eye” and Planck’s Constant for time (1043 seconds)?
Do you have your passport for the transit that’s coming? Are you really ready?
Join Dr. Chuck Missler in the Executive Briefing Room of the River Lodge, New Zealand, as he examines the physics of immortality.
This briefing pack contains 2 hours of teachings
Available in the following formats:
 DVD:
•1 Disc
•2 MP3 Files
•1 PDF Notes File
 

Published on Jan 28, 2015

Chuck Missler had the opportunity to sit discuss Zero Point Energy (ZPE) with Barry Setterfield 
 

Space News from SpaceDaily.com

 

 

Space News From SpaceDaily.Com

 

 

Newly dedicated observatory to search for gravitational waves

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Washington DC (SPX) May 22, 2015
Seeking to expand how we observe and understand the universe where we live, the National Science Foundation has helped dedicate the Advanced Laser Gravitational Wave Observatories (Advanced LIGO) at the LIGO Hanford facility in Richland, Wash. The California Institute of Technology and Massachusetts Institute of Technology designed the NSF-funded facilities and operate them with the goal o
 

Patent for Navy small space debris tracker

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Washington (UPI) May 22, 2015
A U.S. Navy device that detects small debris in space and provides data on their trajectory has been granted a U.S. patent. The Optical Orbital Debris Spotter from the Naval Research Laboratory is compact in size, uses low power and can be integrated into larger satellite designs or flown independently onboard nano-satellite platforms, the Navy said. The device concept is the cre
 

Physicist Finds Mysterious Anti-electron Clouds Inside Thunderstorm

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Durham NH (SPX) May 22, 2015
A terrifying few moments flying into the top of an active thunderstorm in a research aircraft has led to an unexpected discovery that could help explain the longstanding mystery of how lightning gets initiated inside a thunderstorm. University of New Hampshire physicist Joseph Dwyer and lightning science colleagues from the University of California at Santa Cruz and Florida Tech describe t
 

Ceres bright spots: Clearer pictures, but still no answers

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Pasadena, Calif. (UPI) May 22, 2015
Scientists had hoped sharper images of Ceres and its mysterious bright spots would provide some clarity as to their nature and origin, but they remain befuddled. Researchers are fairly certain something in the bottom of a large crater is reflecting the sun's rays, but they still can't verify exactly what the reflective material is. NASA's Dawn probe has spent the last several wee
 

Initial Ariane 5 assembly completed for July launch of dual payloads

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Kourou, French Guiana (ESA) May 22, 2015
Another Ariane 5 has completed its initial build-up at the Spaceport in French Guiana, marking a major milestone in preparations for Arianespace's third heavy-lift mission of 2015 - which will orbit the European MSG-4 meteorological satellite and Brazilian Star One C4 telecommunications relay platform during July. As part of regular pre-flight preparations inside the Spaceport's Launcher I
 

ASC Signal wins large multi-antenna order in Asia

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Plano TX (SPX) May 22, 2015
ASC Signal Corporation was awarded a contract from one of Asia's largest information and communications technology providers for the installation of seven 9.3-meter C-band and one 7.6-meter Ku-band antennas. Included with the antenna purchase are seven of ASC's Next Generation Controller (NGC) and custom feed systems. The new antennas are being installed at a major teleport in Singapore an
 

Superhydrophobic glass coating offers clear benefits

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Oak Ridge TN (SPX) May 15, 2015
A moth's eye and lotus leaf were the inspirations for an antireflective water-repelling, or superhydrophobic, glass coating that holds significant potential for solar panels, lenses, detectors, windows, weapons systems and many other products. The discovery by researchers at the Department of Energy's Oak Ridge National Laboratory, detailed in a paper published in the Journal of Materials
 

Random nanowire configurations boost conductivity

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Bethlehem PA (SPX) May 21, 2015
Researchers at Lehigh University have identified for the first time that a performance gain in the electrical conductivity of random metal nanowire networks can be achieved by slightly restricting nanowire orientation. The most surprising result of the study is that heavily ordered configurations do not outperform configurations with some degree of randomness; randomness in the case of metal nan
 

Using a sounding rocket to help calibrate NASA's SDO

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Greenbelt MD (SPX) May 22, 2015
Watching the sun is dangerous work for a telescope. Solar instruments in space naturally degrade over time, bombarded by a constant stream of solar particles that can cause a film of material to adhere to the optics. Decades of research and engineering skill have improved protecting such optics, but one crucial solution is to regularly recalibrate the instruments to accommodate such changes.
 

Gas arms form giant spiraling molecular cradles of dense molecular cores

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Taipei, Taiwan (SPX) May 22, 2015
A research team led by Dr. Hauyu Liu at the Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA) observed the luminous OB cluster-forming massive molecular clump G33.92+0.11 with the Atacama Large Millimeter/submillimeter Array (ALMA), and unveiled the fine molecular gas structures deeply embedded at the center of the parent molecular cloud. This finding provides a greatly simp
 

Caltech astronomers observe a supernova colliding with its companion star

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Pasadena CA (SPX) May 22, 2015
Type Ia supernovae, one of the most dazzling phenomena in the universe, are produced when small dense stars called white dwarfs explode with ferocious intensity. At their peak, these supernovae can outshine an entire galaxy. Although thousands of supernovae of this kind were found in the last decades, the process by which a white dwarf becomes one has been unclear. That began to change on
 

Scientists tackle mystery of thunderstorms that strike at night

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Boulder CO (SPX) May 22, 2015
Thunderstorms that form at night, without a prod from the Sun's heat, are a mysterious phenomenon. This summer scientists will be staying up late in search of some answers. From June 1 through July 15, researchers from across North America will fan out each evening across the Great Plains, where storms are more common at night than during the day. The research effort, co-organized by the N
 

New options for spintronic devices

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Berlin, Germany (SPX) May 20, 2015
Scientists from Paris and Helmholtz-Zentrum Berlin have been able to switch ferromagnetic domains on and off with low voltage in a structure made of two different ferroic materials. The switching works slightly above room temperature. Their results, which are published online in Scientific Reports, might inspire future applications in low-power spintronics, for instance for fast and efficient da
 

Exploring a new frontier of cyber-physical systems: The human body

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Washington DC (SPX) May 21, 2015
The National Science Foundation has announced two, five-year, center-scale awards totaling $8.75 million to advance the state-of-the-art in medical and cyber-physical systems (CPS). One project will develop "Cyberheart"--a platform for virtual, patient-specific human heart models and associated device therapies that can be used to improve and accelerate medical-device development and testi
 

Cheap radio frequency antenna printed with graphene ink

 
‎24 ‎May ‎2015, ‏‎06:50:56 PMGo to full article
Washington DC (SPX) May 21, 2015
Scientists have moved graphene - the incredibly strong and conductive single-atom-thick sheet of carbon - a significant step along the path from lab bench novelty to commercially viable material for new electronic applications. Researchers from the University of Manchester, together with BGT Materials Limited, a graphene manufacturer in the United Kingdom, have printed a radio frequency an

 

 

NASA: Hang on a Minute, We're NOT Working on Warp-Drive Technology

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Moscow (Sputnik) May 13, 2015
After overly excitable media outlets reported the creation of "warp-drive" technology, NASA has had to come out and set the record straight about what recent reports about an electromagnetic drive that runs without fuel do and do not mean. An April 29 article on NASASpaceflight.com described the results of a test performed on a prototype engine within a vacuum which appeared to create a sm
 

Fifth Vega takes shape for its flight with Sentinel-2A

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Kourou, French Guiana (ESA) May 13, 2015
The fifth Vega launcher continues its integration process in French Guiana for a mission this summer to orbit Europe's Sentinel-2A Earth observation satellite. During activity at the Spaceport's ZLV launch site, Vega's Zefiro 23 solid propellant second stage has now been integrated atop the vehicle's P80 first stage, which also uses solid propellant. This vertical assembly process is
 

Europa's Mystery Dark Material Could Be Sea Salt

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Pasadena CA (JPL) May 13, 2015
NASA laboratory experiments suggest the dark material coating some geological features of Jupiter's moon Europa is likely sea salt from a subsurface ocean, discolored by exposure to radiation. The presence of sea salt on Europa's surface suggests the ocean is interacting with its rocky seafloor - an important consideration in determining whether the icy moon could support life. The study i
 

Proba-V maps world air traffic from space

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Paris (ESA) May 13, 2015
As ESA's Proba-V works quietly on its main task of monitoring vegetation growth across Earth, the minisatellite is also picking up something from a little higher: signals from thousands of aircraft. Launched two years ago, Proba-V has picked up upwards of 25 million positions from more than 15 000 separate aircraft. This is a technical world-first, demonstrating the feasibility of follow-o
 

NASA's New Horizons Spots Pluto's Faintest Known Moons

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Boulder CO (SPX) May 13, 2015
It's a complete Pluto family photo - or at least a photo of the family members we've already met. For the first time, NASA's New Horizons spacecraft has photographed Kerberos and Styx - the smallest and faintest of Pluto's five known moons. Following the spacecraft's detection of Pluto's giant moon Charon in July 2013, and Pluto's smaller moons Hydra and Nix in July 2014 and January 2015,
 

NASA funds SwRI instrument to date Moon and Mars rocks

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
San Antonio TX (SPX) May 13, 2015
NASA has approved $2.6 million to advance development of Southwest Research Institute's (SwRI) Chemistry, Organics, and Dating Experiment (CODEX) instrument. The device will allow unmanned rovers to analyze the decay of radioactive elements to determine the age of rocks on the Moon and Mars. "CODEX will provide unprecedented in-situ age information about surface samples, which is not only
 

MESSENGER reveals Mercury's magnetic field secrets

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Vancouver, Canada (SPX) May 13, 2015
New data from MESSENGER, the spacecraft that orbited Mercury for four years before crashing into the planet a week ago, reveals Mercury's magnetic field is almost four billion years old. The discovery helps scientists piece together the history of Mercury, the closest planet to the sun and one about which we knew very little before MESSENGER. NASA's MESSENGER probe left Earth in 2004, reac
 

Space Launch System Program Moving Forward with Critical Design Review

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Huntsville AL (SPX) May 13, 2015
NASA's Space Launch System (SLS) Program is kicking off its critical design review May 11 at NASA's Marshall Space Flight Center in Huntsville, Alabama. This new rocket will be the most powerful launch vehicle ever built. It is designed to be sustainable and evolve to carry crew and cargo on deep space missions, including an asteroid and ultimately to Mars. Milestone reviews like the criti
 

Weather forecasts for planets beyond our solar system

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Toronto, Canada (SPX) May 13, 2015
"Cloudy for the morning, turning to clear with scorching heat in the afternoon." While this might describe a typical late-summer day in many places on Earth, it may also apply to planets outside our solar system, according to a new study by an international team of astrophysicists from the University of Toronto, York University and Queen's University Belfast. Using sensitive observations f
 

SMC awards 7.8 million dollar contract to Georgia Tech Research Institute

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Los Angeles AFB CA (SPX) May 13, 2015
Georgia Tech Research Institute, Atlanta, Georgia, has been awarded a $7,857,568.00 contract, for combustion stability modeling and design tool development. This contract provides for the development of a suite of software-based design tools for predicting and analyzing stability characteristics of combustion devices based on hydrocarbon-fueled,oxidizer-rich staged combustion rocket engine
 

New program to acquire geospatial applications

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Chantilly, Va. (UPI) May 11, 2015
A government program to solicit and acquire geospatial applications from commercial developers has been launched by the National Geospatial-Intelligence Agency. The GEOINT App Provider Program, IGAPP, is being managed and operated by TASC, an Engility Holdings company. The program facilitates the delivery of the application creations to the NGA GEOINT App Store, an NGA online store fron
 

Breaking waves perturb Earth's magnetic field

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Durham NH (SPX) May 12, 2015
The underlying physical process that creates striking "breaking wave" cloud patterns in our atmosphere also frequently opens the gates to high-energy solar wind plasma that perturbs Earth's magnetic field, or magnetosphere, which protects us from cosmic radiation. The discovery was made by two University of New Hampshire space physicists, who published their findings in the online journal Nature
 

ESA and ADS sign deal for new Copernicus Earth observation mission

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Berlin (SPX) May 12, 2015
At the 36th International Symposium on Remote Sensing of Environment in Berlin, the European Space Agency (ESA) and Airbus Defence and Space, the world's second largest space company, signed the development and production contract for the Jason-CS/Sentinel-6A satellite. Jason-CS/Sentinel-6 is a mission to carry out high-precision measurements of ocean surface topography. The contract is wo
 

Fresh evidence for how water reached Earth found in asteroid debris

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Warwick, UK (SPX) May 12, 2015
Water delivery via asteroids or comets is likely taking place in many other planetary systems, just as it happened on Earth, new research strongly suggests. Published by the Royal Astronomical Society and led by the University of Warwick, the research finds evidence for numerous planetary bodies, including asteroids and comets, containing large amounts of water. The research findings add f
 

FINDER Search and Rescue Technology Helped Save Lives in Nepal

 
‎13 ‎May ‎2015, ‏‎04:29:45 AMGo to full article
Pasadena CA (JPL) May 12, 2015
In the wreckage of a collapsed textile factory and another building in the Nepalese village of Chautara, four men were rescued, thanks to a NASA technology that was able to find their heartbeats. A small, suitcase-sized device called FINDER helped uncover these survivors - two from each destroyed building - in one of the hardest-hit areas of the 7.8-magnitude earthquake that rattled Nepal

 

 

NASA pushes back against proposal to slash climate budget

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Washington (AFP) May 1, 2015
NASA pushed back Thursday against a congressional proposal to slash more than $300 million in funding from its branch focused on climate issues. The proposal would cut funding to NASA's Earth Sciences division, which researches the planet's natural systems and processes - including climate change, severe weather and glaciers. Republican Lamar Smith, who chairs the House of Representativ
 

Telenor satellite begins post-launch maneuvers according to plan

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Palo Alto CA (SPX) May 01, 2015
Space Systems/Loral reports that a satellite designed and built for Telenor Satellite Broadcasting (TSBc), was successfully launched and is performing post-launch maneuvers according to plan. The satellite, THOR 7, deployed its solar arrays on schedule following its launch aboard an Ariane 5 launch vehicle from the European Spaceport in Kourou, French Guiana. It began firing its main thruster ea
 

Strong Evidence for Coronal Heating by Nanoflares

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Indianapolis IN (SPX) May 01, 2015
The Sun's surface is blisteringly hot at 6,000 kelvins or 10,340 degrees Fahrenheit - but its atmosphere is another 300 times hotter. This has led to an enduring mystery for those who study the Sun: What heats the atmosphere to such extreme temperatures? Normally when you move away from a hot source the environment gets cooler, but some mechanism is clearly at work in the solar atmosphere, the c
 

Arianespace at the EU-Japan Business Round Table

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Tokyo, Japan (SPX) May 01, 2015
Arianespace Chairman and CEO Stephane Israel took an active role in this week's meetings of the EU-Japan Business Round Table, which seeks to further strengthen relations between the European Union and Japan - including a focus on launch services. As part of a high-level delegation - which comprises some 50 senior executives from leading Japanese and European companies - Israel discussed w
 

Russia to Create World's First Rocket Engine Manufacturing Holding

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Moscow (Sputnik) May 01, 2015
Russia's United Rocket and Space Corporation (URSC) is drafting a proposal on creation a unique holding, which is set to unite several manufacturers of engines for rockets and missiles, Russia's daily newspaper Izvestia reports on Tuesday. The exact structure of the holding and its head-enterprise are yet to be defined. "Yes, we are working on the creation of a rocket engine manufact
 

Technologies enable ambitious MMS mission

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Greenbelt MD (SPX) May 01, 2015
It was unprecedented developing a mission that could fly four identically equipped spacecraft in a tight formation and take measurements 100 times faster than any previous space mission - an achievement enabled in part by four NASA-developed technologies that in some cases took nearly 10 years to mature. "To get to this point in time, we had to overcome a number of engineering challenges,"
 

Seeing Stars Through The Cloud

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
London, UK (SPX) May 01, 2015
SKA Organisation and AWS are launching the AstroCompute in the Cloud grant programme to accelerate the development of innovative tools and techniques for processing, storing and analysing the global astronomy community's vast amounts of astronomic data in the cloud. Grant recipients will have access to credits for AWS cloud services over a two-year period and up to one petabyte (PB) of sto
 

Arianespace to launch HellaSat-4/SGS-1 for Arabsat and KACST

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Paris (SPX) May 01, 2015
Arianespace, Arabsat and King Abdul-Aziz City for Science and Technology (KACST) have announced the signature of a launch service contract for the Hellasat-4/Saudi Geo Satellite-1 satellite. The satellite will be built by Lockheed Martin as part of a turnkey contract with the operator Arabsat, and for Saudi Arabia-based KASCT. HellaSat-4/Saudi Geo Satellite-1 will be launched in 2018 by an
 

First proton collisions should start in early June

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Dallas TX (SPX) May 01, 2015
First collisions of protons at the world's largest science experiment are expected to start the first or second week of June, according to a senior research scientist with CERN's Large Hadron Collider in Geneva. "It will be about another six weeks to commission the machine, and many things can still happen on the way," said physicist Albert De Roeck, a staff member at CERN and a professor
 

Turkish firm joins NATO BMD support effort

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Ankara, Turkey (UPI) Apr 29, 2015
Turkish defense electronics company Aselsan has joined a multinational industry team for engineering support of NATO's Ballistic Missile Defense program. The team, led by Leidos of the United States, will provide engineering and integration support for the NATO BMD capability, including BMD enhancements to NATO command, control and communications systems, and refinement and maintenance
 

Tidal tugs on Teflon faults drive slow-slipping earthquakes

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Seattle WA (SPX) Apr 30, 2015
Unknown to most people, the Pacific Northwest experiences a magnitude-6.6 earthquake about once a year. The reason nobody notices is that the movement happens slowly and deep underground, in a part of the fault whose behavior, known as slow-slip, was only recently discovered. A University of Washington seismologist who studies slow-slip quakes has looked at how they respond to tidal forces
 

Ascent or no ascent

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Potsdam, Germany (SPX) Apr 30, 2015
Gigantic volumes of hot material rising from the deep earth's mantle to the base of the lithosphere have shaped the face of our planet. Provided they have a sufficient volume, they can lead to break-up of continents or cause mass extinction events in certain periods of the Earth's history. So far it was assumed that because of their high temperatures those bodies - called mantle plumes - ascend
 

Aerospace Defense Force detects recon sats spying on Russia

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Moscow (Sputnik) Apr 30, 2015
Russia's Aerospace Defense Force (VKO) has recently detected on the orbit a group of reconnaissance satellites spying on Russia, commander of the Space Command Maj. Gen. Oleg Maidanovich said Sunday. "Recently the staff of the Main Space Intelligence Center detected a group of newly launched satellites. The group was set to collect intelligence on the devices located on the territory of th
 

Rapid Innovation Fund Award to the Remote Sensing Systems Directorate

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Los Angeles AFB CA (SPX) Apr 30, 2015
The Space and Missile Systems Center Remote Sensing Systems Directorate was recently selected for a Rapid Innovation Fund award of $3 million to support Space Based Infrared System data exploitation innovations. This award will be used to fund the Architecture for Real-time Overhead Persistent Infrared Wideband (ARROW) project, an initiative which enables the detection and tracking of dimm
 

MIPT researchers grow cardiac tissue on 'spider silk' substrate

 
‎01 ‎May ‎2015, ‏‎02:42:32 AMGo to full article
Moscow, Russia (SPX) Apr 12, 2015
Genetically engineered fibers of the protein spidroin, which is the construction material for spider webs, has proven to be a perfect substrate for cultivating heart tissue cells, MIPT researchers found. They discuss their findings in an article that has recently come out in the journal PLOS ONE. The cultivation of organs and tissues from a patient's cells is the bleeding edge of medical r
 
 

SpaceX Dragon cargo ship arrives at space station

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Miami (AFP) Apr 17, 2015
SpaceX's unmanned Dragon cargo ship arrived Friday at the International Space Station, carrying a load of food and supplies for the astronauts living in orbit. European Space Agency astronaut Samantha Cristoforetti grappled the capsule with the space station's robotic arm at 6:55 am (1055 GMT) as the space station flew over the northern Pacific to the east of Japan, NASA said. "Houst
 

Will Asteroid 2012 TC4 Hit Earth in October 2017

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Los Angeles CA (SPX) Apr 17, 2015
On Oct. 12, 2017, the asteroid 2012 TC4 is slated to whizz by Earth dangerously close. The exact distance of its closest approach is uncertain, as well as its size. Based on observations in October 2012 when the space rock missed our planet, astronomers estimate that its size could vary from 12 to 40 meters. The meteor that exploded over the Russian city of Chelyabinsk in February 2013, injuring
 

Robotic Arm Gets Busy on Rock Outcrop

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Pasadena CA (JPL) Apr 17, 2015
Opportunity is on the west rim of Endeavour Crater near the entrance of "Marathon Valley," a putative location for abundant clay minerals. The rover is positioned on a light-toned outcrop next to the feature called "The Spirit of St. Louis" crater. The rover is continuing a campaign to investigate surface targets in this outcrop. On Sol 3984 (April 9, 2015), Opportunity examined the
 

NASA Mars Rover's Weather Data Bolster Case for Brine

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Pasadena CA (JPL) Apr 17, 2015
Martian weather and soil conditions that NASA's Curiosity rover has measured, together with a type of salt found in Martian soil, could put liquid brine in the soil at night. Perchlorate identified in Martian soil by the Curiosity mission, and previously by NASA's Phoenix Mars Lander mission, has properties of absorbing water vapor from the atmosphere and lowering the freezing temperature
 

Video shows SpaceX rocket booster crash land on floating target

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Cape Canaveral, Fla. (UPI) Apr 16, 2015
From NASA's perspective, Tuesday's resupply missions was a success. The rocket went off without a hitch, and the cargo-filled Dragon capsule is safely en route to the International Space Station. But for SpaceX, the second half of the mission - and the one everyone was most excited about - proved to be another failure (albeit one CEO Elon Musk predicted). Yet again, the aerospace comp
 

First Launch From Vostochny Space Center Slated for December 2015

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Moscow (Sputnik) Apr 17, 2015
The first rocket launch from the Russian Vostochy space complex should be completed in December 2015, Russian Deputy Prime Minister Dmitry Rogozin told President Vladimir Putin on Monday. "We propose that the first launch will be in December of this year," Rogozin told Putin. Earlier, media reports said that since construction had fallen behind on the complex that the first launch wo
 

NASA's Curiosity Rover Making Tracks and Observations

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Pasadena CA (JPL) Apr 17, 2015
NASA's Curiosity Mars rover is continuing science observations while on the move this month. On April 16, the mission passed 10 kilometers (6.214 miles) of total driving since its 2012 landing, including about a fifth of a mile (310 meters) so far this month. The rover is trekking through a series of shallow valleys between the "Pahrump Hills" outcrop, which it investigated for six months,
 

NASA-funded Study Explains Saturn's Epic Tantrums

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Pasadena CA (JPL) Apr 17, 2015
The long-standing mystery of why Saturn seethes with enormous storms every 30 years may have been solved by scientists working with data from NASA's Cassini mission. The tempests, which can grow into bright bands that encircle the entire planet, are on a natural timer that is reset by each subsequent storm, the researchers report. In 140 years of telescope observations, great storms have e
 

Russia vows to put Russian cosmonauts on Moon no later than 2030

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Moscow (XNA) Apr 17, 2015
The Federal Space Agency Roscosmos of Russia said Tuesday it would keep implementing space exploration projects in spite of the current economic difficulties and would work to help Russian cosmonauts land on the Moon no later than 2030. Roscosmos head Igor Komarov told reporters that with limited government funds, they have updated programs envisaging construction of a super-heavy carrier
 

Space icon reflects on origins of space program

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Washington DC (SPX) Apr 17, 2015
Legendary Johnson Space Center icon Glynn Lunney, a flight director during the Gemini and Apollo Programs and best known for his work with Apollo 13, talked about the early days of the space program and his contributions to it to a packed house at the Gilruth Center recently. His "Highways into Space" lecture, based on his new autobiography, was hosted by the SAIC/Safety and Mission Assura
 

Mars might have liquid water

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Copenhagen, Denmark (SPX) Apr 17, 2015
Researchers have long known that there is water in the form of ice on Mars. Now, new research from NASA's Mars rover Curiosity shows that it is possible that there is liquid water close to the surface of Mars. The explanation is that the substance perchlorate has been found in the soil, which lowers the freezing point so the water does not freeze into ice, but is liquid and present in very salty
 

Dawn's Ceres Color Map Reveals Surface Diversity

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Pasadena CA (JPL) Apr 17, 2015
A new color map of dwarf planet Ceres, which NASA's Dawn spacecraft has been orbiting since March, reveals the diversity of the surface of this planetary body. Differences in morphology and color across the surface suggest Ceres was once an active body, Dawn researchers said at the 2015 General Assembly of the European Geosciences Union in Vienna. "This dwarf planet was not just an inert r
 

Mexico, Russia Deepening Cooperation in Space

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Moscow (Sputnik) Apr 17, 2015
Russia and Mexico are developing relations in joint space exploration, Mexican ambassador to Moscow Ruben Beltran said Tuesday. "Another [Mexican] satellite will be launched from Baikonur in 15 days, thanks to our cooperation with [Russia's space agency] Roscosmos. We are pleased by this, we are happy about this fact. So we are bringing our interests together in the space sphere too," Belt
 

Ramping Up For Johnson's Chamber A Test

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Greenbelt MD (SPX) Apr 17, 2015
Looking out from inside the enormous mouth of NASA's giant thermal vacuum chamber, called Chamber A, located at NASA's Johnson Space Center in Houston, the Pathfinder or test model of the James Webb Space Telescope's backplane is seen sliding in on the rails. Previously used for manned spaceflight missions, this historic chamber is now being readied for a cryogenic test. "After over
 

A Lot Can Happen in 5 Years: the President's 2010 Exploration Goals

 
‎17 ‎April ‎2015, ‏‎08:36:20 AMGo to full article
Washington DC (SPX) Apr 17, 2015
On April 15, 2010, President Barack Obama outlined his plan for America's space program. At NASA's Kennedy Space Center that day, the President said: "We will not only extend humanity's reach in space - we will strengthen America's leadership here on Earth ... For pennies on the dollar, the space program has improved our lives, advanced our society, strengthened our economy, and inspired
 

'Dwarf planet' Ceres spawns giant mystery

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Vienna (AFP) April 13, 2015
First classified a planet, then an asteroid and then a "dwarf planet" with some traits of a moon - the more scientists learn about Ceres, the weirder it becomes. And new observations of the sphere of rock and ice circling our Sun between Mars and Jupiter have added to the mystery, researchers said Monday. Astrophysicists have been looking to a $473-million (446-million-euro) mission to
 

On another planet: the weird ways of water

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Paris (AFP) April 13, 2015
Once every 20 or 30 years, a superstorm greater than Earth breaks out on Saturn and whips around the ringed planet in a violent spectacle that rages for months on end. The storm can stretch hundreds of thousands of kilometres (miles) before fizzling out - some continue all the way around the planet until they meet their own tail. Dubbed "Great White Spots" after the tinge of their light
 

Russia 'busts satellite spy ring': space commander

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Moscow (AFP) April 12, 2015
Russia has uncovered a group of spy satellites, the head of its space command said in a film broadcast Sunday, which warned of "enemy" satellites that could masquerade as space junk. "Very recently, specialists of the department of space intelligence centre uncovered a newly created group of space satellites... made for radio-technical reconnaissance of equipment on Russian territory," said
 

Canada Grants Kiev Access to Sophisticated Satellite Imagery

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Moscow (Sputnik) Apr 12, 2015
Ukraine has gained access to Canadian satellite images that Ottawa's own military forces could hardly afford; it still remains unclear how much the agreement with the Kiev regime will cost Canadian taxpayers. Canadian authorities have announced they would provide Ukraine with satellite imagery from its Radarsat-2 satellite; however, Ottawa's decision has sparked controversy among Canadian
 

What happens underground when a missile or meteor hits

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Durham NC (SPX) Apr 14, 2015
When a missile or meteor strikes the earth, the havoc above ground is obvious, but the details of what happens below ground are harder to see. Duke University physicists have developed techniques that enable them to simulate high-speed impacts in artificial soil and sand in the lab, and then watch what happens underground close-up, in super slow motion. In a study scheduled to appear this
 

Risk of lightning postpones SpaceX launch

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Miami (AFP) April 13, 2015
The risk of lightning postponed Monday's planned launch of SpaceX's Falcon 9 rocket, carrying a load of food and supplies for the International Space Station. The attempt to send the unmanned Dragon cargo carrier into space was postponed less than three minutes before launch, due to a storm system that was moving into the area, NASA said. The next launch bid is scheduled for Tuesday aft
 

BRICS May Engage in New Int'l Orbital Station Project

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Moscow (Sputnik) Apr 14, 2015
BRICS countries may be invited to participate in setting up a new international orbital space station, Russia's space agency Roscosmos chief Igor Komarov said. Speaking in an interview with Russian newspaper "Rossiyskaya Gazeta" due to be released on Friday, Komarov said that a new orbital station is under discussion to replace the International Space Station (ISS). "The discussion f
 

Cosmic debris: Study looks inside the universe's most powerful explosions

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Columbus OH (SPX) Apr 14, 2015
A new study provides an inside look at the most powerful explosions in the universe: gamma-ray bursts. These rare explosions happen when extremely massive stars go supernova. The stars' strong magnetic fields channel most of the explosion's energy into two powerful plasma jets, one at each magnetic pole. The jets spray energetic particles for light-years in both directions, at close to light spe
 

Fabrication Complete on SLS Core Stage Simulator Test Article

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Huntsville AL (SPX) Apr 14, 2015
Engineers recently completed fabrication of the core stage simulator structural test article for NASA's new rocket, the Space Launch System (SLS). The SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. The structural test article is a replica of the top of the core stage and is approximately 10 feet tall and 27 feet in
 

Examining Rock Outcrop at 'The Spirit of St. Louis' Crater

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Pasadena CA (JPL) Apr 14, 2015
Opportunity is on the west rim of Endeavour Crater near the entrance of "Marathon Valley," a putative location for abundant clay minerals. The rover is positioned on a light-toned outcrop next to the feature called "The Spirit of St. Louis" crater. The rover is continuing a campaign to investigate surface targets in this light-toned outcrop. On Sol 3977 (April 1, 2015), the rover beg
 

Accelerating universe? Not so fast

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Tucson AZ (SPX) Apr 14, 2015
Certain types of supernovae, or exploding stars, are more diverse than previously thought, a University of Arizona-led team of astronomers has discovered. The results, reported in two papers published in the Astrophysical Journal, have implications for big cosmological questions, such as how fast the universe has been expanding since the Big Bang. Most importantly, the findings hint at the
 

Correction Maneuver Puts MESSENGER Right on Course

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Laurel MD (SPX) Apr 14, 2015
The MESSENGER team is pulling out all the stops to give the spacecraft life far beyond its original design. On April 8, mission operators at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., successfully conducted a contingency orbit-correction maneuver (OCM-15a), to supplement the April 6 burn (OCM-15) that concluded early when the last drops of hydrazine fuel were e
 

Last stretch before being packed tight

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Paris (ESA) Apr 14, 2015
Once in space, Sentinel-2A will open its solar wing to generate the power it needs to carry out the task of monitoring Earth's vegetation. Engineers have recently made sure this move is well rehearsed before the satellite is packed up and shipped to the launch site. This final deployment test marks the end of a six-month programme at IABG in Germany to make sure the satellite can withstand
 

Citizen Scientists Discover Yellow "Space Balls"

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Huntsville AL (SPX) Apr 14, 2015
Citizen scientists scanning images from NASA's Spitzer Space Telescope, an orbiting infra-red observatory, recently stumbled upon a new class of curiosities that had gone largely unrecognized before: yellow balls. "The volunteers started chatting about the yellow balls they kept seeing in the images of our galaxy, and this brought the features to our attention," said Grace Wolf-Chase of th
 

RockSat-X Rescheduled for April 18

 
‎14 ‎April ‎2015, ‏‎08:17:41 AMGo to full article
Washington DC (SPX) Apr 14, 2015
The RockSat-X payload being carried into space on a NASA Terrier-Improved Malemute suborbital sounding rocket is scheduled for launch between 6:30 and 10 a.m., April 18. The backup days are April 19 - 21. The launch was previously scheduled in March but was postpone because of unacceptable weather for launch and/or payload recovery. The rocket is carrying experiments developed by undergrad
 

Saucers, totes, cans, passion and dedication shape local students at JSC

 
‎12 ‎April ‎2015, ‏‎05:29:49 AMGo to full article
Houston TX (SPX) Apr 10, 2015
Flying saucers have landed at Johnson Space Center-and they are taking over the minds of our youth. OK, so they are not really flying saucers. Those landed a few years back. Actually, this year they are totes and cans. Last year they were exercise balls. But they definitely are shaping young minds, helping to create students who eventually become brilliant new engineers both at JSC and thr
 

Romania 'Agression Platform' Against Russia With US Missile Defense Systems

 
‎12 ‎April ‎2015, ‏‎05:29:49 AMGo to full article
Moscow (Sputnik) Apr 12, 2015
Alexander Mosesov - The planned deployment of the shore-based Aegis command and control component of the US Ballistic Missile Defense (BMD) system in Romania is turning the country into a platform for aggression against Russia, leader of the National-European Communitarian Party (NCP) told Sputnik on Tuesday. According to the US Missile Defense Agency, the United States will install an Aeg
 

ALMA captures Juno traveling through space

 
‎12 ‎April ‎2015, ‏‎05:29:49 AMGo to full article
Charlottesville NC (SPX) Apr 10, 2015
A series of images made with the Atacama Large Millimeter/submillimeter Array (ALMA) provides an unprecedented view of the surface of Juno, one of the largest members of our solar system's main asteroid belt. Linked together into a brief animation, these high-resolution images show the asteroid rotating through space as it shines in millimeter-wavelength light. "In contrast to optical tele
 

May I go to space once more asks Brian Duffy

 
‎12 ‎April ‎2015, ‏‎05:29:49 AMGo to full article
Los Angeles CA (SPX) Apr 10, 2015
Space is always on the mind of a veteran NASA astronaut Brian Duffy. The key figure in an aerospace company Orbital ATK and a Space Shuttle commander is extremely keen on flying to space again. The enthusiasm emanating from him for the future journeys beyond Earth, which we all patiently wait for, is heartily thrilling. In an interview with astrowatch.net, Duffy talks his successful astronaut ca
 

New DARPA Programs Simultaneously Test Limits of Technology, Credulity

 
‎12 ‎April ‎2015, ‏‎05:29:49 AMGo to full article
Washington DC (SPX) Apr 12, 2015
Less than one week after releasing Breakthrough Technologies for National Security, DARPA's latest summary of the Agency's mission, accomplishments and funding priorities for extending its legacy of technological disruption, the Agency has announced four major new programs-evidence of DARPA's commitment to pursuing high-risk/high-reward research and making the impossible possible. The prog
 

France, India to Boost Space Cooperation, Other Joint Projects

 
‎12 ‎April ‎2015, ‏‎05:29:49 AMGo to full article
New Delhi (Sputnik) Apr 10, 2015
In June 2014, an Indian rocket put into orbit five foreign satellites, including one built by France. "We will further our cooperation in the field of space. We will sign more joint cooperation programs. We will further our cooperation in joint launching of satellites," Richier told journalists. The diplomat spoke ahead of Indian Prime Minister Narenda Modi's trip to France scheduled
 

Aliens Are Probably Huge 650-Pound Creatures

 
‎12 ‎April ‎2015, ‏‎05:29:49 AMGo to full article
Barcelona, Spain (Sputnik) Apr 10, 2015
New research proposes that if intelligent life outside Earth's atmosphere exists, chances are it's enormous. The findings from University of Barcelona cosmologist Dr. Fergus Simpson are based on a mathematical algorithm that assumes all theoretical life in the universe follows the same laws of conservation of energy seen on Earth: the bigger the animal, the more resources it needs to survi
 

Our Sun came late to the Milky Way's star-birth party

 
‎12 ‎April ‎2015, ‏‎05:29:49 AMGo to full article
Greenbelt MD (SPX) Apr 12, 2015
In one of the most comprehensive multi-observatory galaxy surveys yet, astronomers find that galaxies like our Milky Way underwent a stellar "baby boom," churning out stars at a prodigious rate, about 30 times faster than today. Our sun, however, is a late "boomer." The Milky Way's star-birthing frenzy peaked 10 billion years ago, but our sun was late for the party, not forming until rough
 

Comms system critical to delaying MESSENGER's Mercury impact

 
‎12 ‎April ‎2015, ‏‎05:29:49 AMGo to full article
Laurel MD (SPX) Apr 12, 2015
MESSENGER's orbit-correction maneuver on April 6 was a nail biter. It was the 15th such maneuver since the spacecraft entered orbit about Mercury in 2011, and the third in a series of increasingly risky "burns" designed to delay MESSENGER's inevitable impact onto Mercury's surface. Each maneuver illustrates the critical role that the spacecraft's radio frequency (RF) telecommunications system pl
 

Mars has belts of glaciers consisting of frozen water

 
‎12 ‎April ‎2015, ‏‎05:29:49 AMGo to full article
Copenhagen, Denmark (SPX) Apr 12, 2015
Mars has distinct polar ice caps, but Mars also has belts of glaciers at its central latitudes in both the southern and northern hemispheres. A thick layer of dust covers the glaciers, so they appear as surface of the ground, but radar measurements show that underneath the dust there are glaciers composed of frozen water. New studies have now calculated the size of the glaciers and thus th
 

Guardians of the Galaxy: Russia Creates International Space Patrol

 
‎12 ‎April ‎2015, ‏‎05:29:48 AMGo to full article
Moscow (Sputnik) Apr 12, 2015
Russia's Ministry of Defense on April 1 established the Aerospace Monitoring Forces (AMF) tasked with providing security to spacecraft and the International Space Station (ISS) and enforcing international rules of space conduct. The military corps, dubbed the Space Patrol by the Russian media, will carry out joint missions in cooperation with similar forces under development in other count
 

NASA selects proposals for ultra-lightweight material development

 
‎12 ‎April ‎2015, ‏‎05:29:48 AMGo to full article
Washington DC (SPX) Apr 12, 2015
NASA has selected three proposals to develop and manufacture ultra-lightweight (ULW) materials for future aerospace vehicles and structures. The proposals will mature advanced technologies that will enable NASA to reduce the mass of spacecraft by 40 percent for deep space exploration. "Lightweight and multifunctional materials and structures are one of NASA's top focus areas capable of hav
 

DARPA Seeks to Create Software Systems That Could Last 100 Years

 
‎12 ‎April ‎2015, ‏‎05:29:48 AMGo to full article
Washington DC (SPX) Apr 12, 2015
As modern software systems continue inexorably to increase in complexity and capability, users have become accustomed to periodic cycles of updating and upgrading to avoid obsolescence-if at some cost in terms of frustration. In the case of the U.S. military, having access to well-functioning software systems and underlying content is critical to national security, but updates are no less proble
 

Seasonal, year-long cycles seen on the sun

 
‎12 ‎April ‎2015, ‏‎05:29:48 AMGo to full article
Greenbelt MD (SPX) Apr 12, 2015
Our sun is constantly changing. It goes through cycles of activity - swinging between times of relative calm and times when frequent explosions on its surface can fling light, particles and energy out into space. This activity cycle peaks approximately every 11 years. New research shows evidence of a shorter time cycle as well, with activity waxing and waning over the course of about 330 days.
 

Unravelling relativistic effects in the heaviest actinide element

 
‎12 ‎April ‎2015, ‏‎05:29:48 AMGo to full article
Mainz, Germany (SPX) Apr 12, 2015
An international collaboration led by the research group of superheavy elements at the Japan Atomic Energy Agency (JAEA), Tokai, Japan has achieved the ionization potential measurement of lawrencium (element 103) with a novel-type technique at the JAEA tandem accelerator. Based on the empirically developed "actinide concept", and in agreement with theoretical calculations, in today's Perio
 

Mars' dust-covered glacial belts may contain tons of water

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Copenhagen, Denmark (UPI) Apr 9, 2015
New research shows Mars' buried glaciers contain enough ice to cover the entire planet with a coat three feet thick. The evidence also proves the dust-covered glacial belts to contain frozen water, not carbon dioxide. Previous satellite images have suggested the presence of hefty glacial bands spanning the planet's northern and southern hemispheres just beneath the Martian surface. But
 

The Solar System and Beyond is Awash in Water

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Pasadena CA (JPL) Apr 10, 2015
As NASA missions explore our solar system and search for new worlds, they are finding water in surprising places. Water is but one piece of our search for habitable planets and life beyond Earth, yet it links many seemingly unrelated worlds in surprising ways. "NASA science activities have provided a wave of amazing findings related to water in recent years that inspire us to continue inve
 

Hubble finds phantom objects near dead quasars

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Greenbelt MD (SPX) Apr 10, 2015
NASA's Hubble Space Telescope has photographed a set of wispy, goblin-green objects that are the ephemeral ghosts of quasars that flickered to life and then faded. The glowing structures have looping, helical, and braided shapes. "They don't fit a single pattern," said Bill Keel of the University of Alabama, Tuscaloosa, who initiated the Hubble survey. Keel believes the features offer insi
 

NASA Joins Forces to Put Satellite Eyes on Threat to U.S. Freshwater

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Greenbelt MD (SPX) Apr 10, 2015
NASA has joined forces with the U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, and U.S. Geological Survey to transform satellite data designed to probe ocean biology into information that will help protect the American public from harmful freshwater algal blooms. Algal blooms are a worldwide environmental problem causing human and animal health risks
 

Home Away From Home: NASA Spider-Droids to Build in Space

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Moscow (Sputnik) Apr 10, 2015
A company called Tethers Unlimited is developing a futuristic "Arachnid-like" droid system, funded by the North American Space Agency, that hopes to help humanity's journey into - and settlement in - outer-space. Dubbed the "SpiderFab," the droids will work similarly to a 3D printer to help construct spacecraft, radio antennas, and, in the long term, infrastructure to support the expansion
 

Special 3-D Delivery From Space to NASA's Marshall Space Flight Center

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Huntsville AL (SPX) Apr 10, 2015
Engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama, unboxed some special cargo from the International Space Station on April 6: the first items manufactured in space with a 3-D printer. The items were manufactured as part of the 3-D Printing in Zero-G Technology Demonstration on the space station to show that additive manufacturing can make a variety of parts and tools
 

NASA Extends Campaign for Public to Name Features on Pluto

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Washington DC (SPX) Apr 10, 2015
The public has until Friday, April 24 to help name new features on Pluto and its orbiting satellites as they are discovered by NASA's New Horizons mission. Announced in March, the agency wants to give the worldwide public more time to participate in the agency's mission to Pluto that will make the first-ever close flyby of the dwarf planet on July 14. The campaign extension, in partnership
 

Dawn in Excellent Shape One Month After Ceres Arrival

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Pasadena CA (JPL) Apr 10, 2015
Since its capture by the gravity of dwarf planet Ceres on March 6, NASA's Dawn spacecraft has performed flawlessly, continuing to thrust with its ion engine as planned. The thrust, combined with Ceres' gravity, is gradually guiding the spacecraft into a circular orbit around the dwarf planet. All of the spacecraft's systems and instruments are in excellent health. Dawn has been following i
 

ALMA Sees Einstein Ring in Stunning Image of Lensed Galaxy

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Charlottesville NC (SPX) Apr 10, 2015
Astronomers have discovered that a distant galaxy - seen from Earth with the aid of a gravitational lens - appears like a cosmic ring, thanks to the highest resolution images ever taken with the Atacama Large Millimeter/submillimeter Array (ALMA). Forged by the chance alignment of two distant galaxies, this striking ring-like structure is a rare and peculiar manifestation of gravitational
 

NASA Extends Lockheed Martin Contract To Prepare Critical Cargo For ISS

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Rockville, MD (SPX) Apr 10, 2015
Lockheed Martin (LMT) will plan, process and pack a steady supply of cargo for the International Space Station (ISS)-ranging from science hardware to food and the crew's personal items-under an extension of NASA's Cargo Mission Contract. Currently, Lockheed Martin maintains more than three million items destined for the station. The team exports and ships about 25,000 pounds of cargo
 

Scientists Take Aim at Four Corners Methane Mystery

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Pasadena CA (JPL) Apr 10, 2015
Researchers from several institutions are in the Four Corners region of the U.S. Southwest with a suite of airborne and ground-based instruments, aiming to uncover reasons for a mysterious methane "hot spot" detected from space. "With all the ground-based and airborne resources that the different groups are bringing to the region, we have the unique chance to unequivocally solve the Four C
 

Sun experiences seasonal changes, new research finds

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Boulder CO (SPX) Apr 10, 2015
The Sun undergoes a type of seasonal variability with its activity waxing and waning over the course of nearly two years, according to a new study by a team of researchers led by the National Center for Atmospheric Research (NCAR). This behavior affects the peaks and valleys in the approximately 11-year solar cycle, sometimes amplifying and sometimes weakening the solar storms that can buffet Ea
 

US, Japan trust each other but both wary of China: poll

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Tokyo (AFP) April 8, 2015
Over seven decades after Japan attacked Pearl Harbor and dragged the United States into a global war, Americans and Japanese overwhelmingly trust each other and are wary of China, an opinion poll has shown. In contrast to the oft-heard calls from Beijing for more Japanese contrition over World War II, around two-thirds of Americans believe Tokyo has apologised enough or has no need to say so
 

Next-gen temperature sensor to measure ocean dynamics

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Lincoln NB (SPX) Apr 09, 2015
UNL engineers and the U.S. Naval Research Laboratory have designed a next-generation temperature sensor set to improve the measurement of oceanic dynamics that shape marine biology, climate patterns and military operations. The fiber-optic sensor can register significantly smaller temperature changes at roughly 30 times the speed of existing commercial counterparts, said co-designer Ming H
 

Tunneling across a tiny gap

 
‎10 ‎April ‎2015, ‏‎03:33:52 AMGo to full article
Boston MA (SPX) Apr 09, 2015
Conduction and thermal radiation are two ways in which heat is transferred from one object to another: Conduction is the process by which heat flows between objects in physical contact, such as a pot of tea on a hot stove, while thermal radiation describes heat flow across large distances, such as heat emitted by the sun. These two fundamental heat-transfer processes explain how energy mov
 

New study hints at spontaneous appearance of primordial DNA

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Boulder CO (SPX) Apr 08, 2015
The self-organization properties of DNA-like molecular fragments four billion years ago may have guided their own growth into repeating chemical chains long enough to act as a basis for primitive life, says a new study by the University of Colorado Boulder and the University of University of Milan. While studies of ancient mineral formations contain evidence for the evolution of bacteria f
 

Moon formed when young Earth and little sister collided

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
College Park, Md. (UPI) Apr 8, 2015
It's long been believed that Earth's moon was formed by a significant planetary collision with a Mars-like protoplanet called Theia. Now, a new study suggests the primordial protoplanet that crashed into a young Earth was quite similar in size and composition. "The Earth and the moon are not twins born from the same planet, but they are sisters in the sense that they grew up in the same
 

Plants Use Sixth Sense for Growth Aboard the Space Station

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Houston TX (SPX) Apr 09, 2015
Although it is arguable as to whether plants have all five human senses - sight, scent, hearing, taste and touch - they do have a unique sense of gravity, which is being tested in space. Researchers with the Japan Aerospace Exploration Agency will conduct a second run of the Plant Gravity Sensing study after new supplies are delivered by the sixth SpaceX commercial resupply mission to the Intern
 

Wanted: a mission name for astronaut Thomas

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Paris (ESA) Apr 09, 2015
ESA astronaut Thomas Pesquet will fly to the International Space Station next year on a six-month adventure of science in weightlessness. Now Thomas wants you to think of a name for his flight - and it will appear on the mission patch he will wear in space. Thomas writes: "European astronauts fly to space to benefit people on Earth through scientific research and exploration. I want to sha
 

Black holes don't erase information, scientists say

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Buffalo NY (SPX) Apr 09, 2015
Shred a document, and you can piece it back together. Burn a book, and you could theoretically do the same. But send information into a black hole, and it's lost forever. That's what some physicists have argued for years: That black holes are the ultimate vaults, entities that suck in information and then evaporate without leaving behind any clues as to what they once contained. But new re
 

Cornell plays key role surfing for gravitational waves

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Ithica NY (SPX) Apr 09, 2015
A full century after Albert Einstein's Theory of Relativity proclaimed that gravitational waves cause ripples in spacetime, humanity may finally have the tools to detect these waves. The National Science Foundation (NSF) has awarded $14.5 million to the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) consortium over five years to create and operate a Physics Frontie
 

Team Returning Orbiter to Duty After Computer Swap

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Pasadena CA (JPL) Apr 09, 2015
NASA's Mars Reconnaissance Orbiter, at Mars since 2006, made an unplanned switch on Wednesday from one main computer to a redundant one onboard, triggering a hiatus in planned activities. Sensing the computer swap, the orbiter put itself into a precautionary safe standby mode. It remained healthy, in communication and fully powered. The mission's operations team expects the Mars Reconnaiss
 

Hunting Hidden Treasures: Antarctic Meteorites Arrive at JSC

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Houston TX (SPX) Apr 09, 2015
Meteorite samples collected in Antarctica over the past two seasons arrived at Johnson Space Center on March 24. The samples will be examined, classified and curated in the Antarctic Meteorite Processing Lab here. Those of greatest scientific interest will be sent to scientists around the world to study. All of the samples were found in the blue ice fields along the Transantarctic Mountain
 

Rogozin vows spaceport to be completed without more scandals

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Moscow (Sputnik) Apr 09, 2015
Russian Deputy Prime Minister Dmitri Rogozin has vowed that the construction of Russia's Vostochny Cosmodrome will be completed without any further corruption scandals. Managing to reach a compromise with striking workers over wage arrears which may have been embezzled by one of the subcontractors charged with the construction of the site, Rogozin promised that the situation will not be al
 

NASA advances composite materials for aircraft of the future

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Washington DC (SPX) Apr 09, 2015
NASA has established a public-private partnership with five organizations to advance knowledge about composite materials that could improve the performance of future aircraft. Composites are innovative new materials for building aircraft that can enhance strength while remaining lightweight. The agency selected the National Institute of Aerospace (NIA) in Hampton, Virginia, to manage admin
 

Supernova crime scene shows a single white dwarf to blame

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Greenbelt MD (SPX) Apr 09, 2015
Using archival data from the Japan-led Suzaku X-ray satellite, astronomers have determined the pre-explosion mass of a white dwarf star that blew up thousands of years ago. The measurement strongly suggests the explosion involved only a single white dwarf, ruling out a well-established alternative scenario involving a pair of merging white dwarfs. "Mounting evidence indicates both of these
 

Battery energy storage project shows promise for electricity network

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Brisbane, Australia (SPX) Apr 08, 2015
With rising electricity prices one of the biggest issues facing households, Griffith University (Australia) research into energy storage and supply holds the promise of cheaper, better quality power for the low voltage (LV) electricity distribution network. According to the research from Griffith's School of Engineering and published in the journal Applied Energy, a forecast-based, three-p
 

Nanoscale speed bump could regulate plasmons for high-speed data flow

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Washington DC (SPX) Apr 08, 2015
The name sounds like something Marvin the Martian might have built, but the "nanomechanical plasmonic phase modulator" is not a doomsday device. Developed by a team of government and university researchers, including physicists from the National Institute of Standards and Technology (NIST), the innovation harnesses tiny electron waves called plasmons. It's a step towards enabling computers to pr
 

Physicists create new molecule with record-setting dipole moment

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Norman OK (SPX) Apr 08, 2015
A proposed pathway to construct quantum computers may be the outcome of research by a University of Oklahoma physics team that has created a new molecule based on the interaction between a highly-excited type of atom known as a Rydberg atom and a ground-state atom. A unique property of the molecule is the large permanent dipole moment, which reacts with an electric field much like a bar ma
 

Dusty substructure in a galaxy far far away

 
‎09 ‎April ‎2015, ‏‎09:36:41 AMGo to full article
Munich, Germany (SPX) Apr 09, 2015
Scientists at the Max Planck Institute for Astrophysics (MPA) have combined high-resolution images from the ALMA telescopes with a new scheme for undoing the distorting effects of a powerful gravitational lens in order to provide the first detailed picture of a young and distant galaxy, over 11 billion light-years from Earth. The reconstructed images show that star formation is heating int

 

 
 

 

 
 

News About Time And Space

 

 

Two Large Hadron Collider experiments first to observe rare subatomic process

 
‎24 ‎May ‎2015, ‏‎10:53:16 AMGo to full article
Geneva, Switzerland (SPX) May 22, 2015 - Two experiments at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland, have combined their results and observed a previously unseen subatomic process.

As published in the journal Nature this week, a joint analysis by the CMS and LHCb collaborations has established a new and extremely rare decay of the Bs particle (a heavy composite particle consisting of a bottom antiquark and a strange quark) into two muons. Theorists had predicted that this decay would only occur about four times out of a billion, and that is roughly what the two experiments observed.

"It's amazing that this theoretical prediction is so accurate and even more amazing that we can actually observe it at all," said Syracuse University Professor Sheldon Stone, a member of the LHCb collaboration. "This is a great triumph for the LHC and both experiments."

LHCb and CMS both study the properties of particles to search for cracks in the Standard Model, our best description so far of the behavior of all directly observable matter in the universe. The Standard Model is known to be incomplete since it does not address issues such as the presence of dark matter or the abundance of matter over antimatter in our universe. Any deviations from this model could be evidence of new physics at play, such as new particles or forces that could provide answers to these mysteries.

"Many theories that propose to extend the Standard Model also predict an increase in this Bs decay rate," said Fermilab's Joel Butler of the CMS experiment. "This new result allows us to discount or severely limit the parameters of most of these theories. Any viable theory must predict a change small enough to be accommodated by the remaining uncertainty."

Researchers at the LHC are particularly interested in particles containing bottom quarks because they are easy to detect, abundantly produced and have a relatively long lifespan, according to Stone.

"We also know that Bs mesons oscillate between their matter and their antimatter counterparts, a process first discovered at Fermilab in 2006," Stone said. "Studying the properties of B mesons will help us understand the imbalance of matter and antimatter in the universe."

That imbalance is a mystery scientists are working to unravel. The big bang that created the universe should have resulted in equal amounts of matter and antimatter, annihilating each other on contact. But matter prevails, and scientists have not yet discovered the mechanism that made that possible.

"The LHC will soon begin a new run at higher energy and intensity," Butler said. "The precision with which this decay is measured will improve, further limiting the viable Standard Model extensions. And of course, we always hope to see the new physics directly in the form of new particles or forces."

This discovery grew from analysis of data taken in 2011 and 2012 by both experiments. Scientists also saw some evidence for this same process for the Bd particle, a similar particle consisting of a bottom antiquark and a down quark. However, this process is much more rare and predicted to occur only once out of every 10 billion decays. More data will be needed to conclusively establish its decay to two muons.

Read the paper in Nature

 

 

Quantum physics on tap

 
‎24 ‎May ‎2015, ‏‎10:53:16 AMGo to full article
Montreal, Canada (SPX) May 21, 2015 - We all know intuitively that normal liquids flow more quickly as the channel containing them tightens. Think of a river flowing through narrow rapids. But what if a pipe were so amazingly tiny that only a few atoms of superfluid helium could squeeze through its opening at once? According to a longstanding quantum-mechanics model, the superfluid helium would behave differently from a normal liquid: far from speeding up, it would actually slow down.

For more than 70 years, scientists have been studying the flow of helium through ever smaller pipes. But only recently has nanotechnology made it possible to reach the scale required to test the theoretical model, known as the Tomonaga-Luttinger theory (after the scientists who developed it).

Now, a team of McGill University researchers, with collaborators at the University of Vermont and at Leipzig University in Germany, has succeeded in conducting experiments with the smallest channel yet - less than 30 atoms wide. In results published online in Science Advances, the researchers report that the flow of superfluid helium through this miniature faucet does, indeed, appear to slow down.

"Our results suggest that a quantum faucet does show a fundamentally different behaviour," says McGill physics professor Guillaume Gervais, who led the project. "We don't have the smoking gun yet. But we think this a great step toward proving experimentally the Tomonaga-Luttinger theory in a real liquid."

The zone where physics changes
Insights from the research could someday contribute to novel technologies, such as nano-sensors with applications in GPS systems. But for now, Gervais says, the results are significant simply because "we're pushing the limit of understanding things on the nanoscale. We're approaching the grey zone where all physics changes."

Prof. Adrian Del Maestro from the University of Vermont has been employing high-performance computer simulations to understand just how small the faucet has to be before this new physics emerges. "The ability to study a quantum liquid at such diminutive length scales in the laboratory is extremely exciting as it allows us to extend our fundamental understanding of how atoms cooperate to form the superfluid state of matter," he says.

"The superfluid slowdown we observe signals that this cooperation is starting to break down as the width of the pipe narrows to the nanoscale" and edges closer to the exotic one-dimensional limit envisioned in the Tomonaga-Luttinger theory.

Building what is probably the world's smallest faucet has been no simple task. Gervais hatched the idea during a five-minute conversation over coffee with a world-leading theoretical physicist. That was eight years ago. But getting the nano-plumbing to work took "at least 100 trials - maybe 200," says Gervais, who is a fellow of the Canadian Institute for Advanced Research.

A beam of electrons as drill bit
Using a beam of electrons as a kind of drill bit, the team made holes as small as seven nanometers wide in a piece of silicon nitride, a tough material used in applications such as automotive diesel engines and high-performance ball bearings.

By cooling the apparatus to very low temperatures, placing superfluid helium on one side of the pore and applying a vacuum to the other, the researchers were able to observe the flow of the superfluid through the channel. Varying the size of the channel, they found that the maximum speed of the flow slowed as the radius of the pore decreased.

The experiments take advantage of a unique characteristic of superfluids. Unlike ordinary liquids - water or maple syrup, for example - superfluids can flow without any viscosity. As a result, they can course through extremely narrow channels; and once in motion, they don't need any pressure to keep going. Helium is the only element in nature known to become a superfluid; it does so when cooled to an extremely low temperature.

An inadvertent breakthrough
For years, however, the researchers were frustrated by a technical glitch: the tiny pore in the silicon nitride material kept getting clogged by contaminants. Then one day, while Gervais was away at a conference abroad, a new student in his lab inadvertently deviated from the team's operating procedure and left a valve open in the apparatus. "It turned out that this open valve kept the hole open," Gervais says. "It was the key to getting the experiment to work. Scientific breakthroughs don't always happen by design!"

Prof. Bernd Rosenow, a quantum physicist at Leipzig University's Institute for Theoretical Physics, also contributed to the study. "Critical flow and dissipation in a quasi-one-dimensional superfluid," Pierre-Francois Duc, Michel Savard, Matei Petrescu, Bernd Rosenow, Adrian Del Maestro, Guillaume Gervais. Science Advances, published online May 15, 2015. 10.1126/sciadv.1400222.

 

 

Syracuse physicists aid in discovery of subatomic process

 
‎24 ‎May ‎2015, ‏‎10:53:16 AMGo to full article
Syracuse, NY (SPX) May 19, 2015 - Physicists in Syracuse University's College of Arts and Sciences have helped discover a rare subatomic process. Their findings, featured in the current issue of Nature magazine (Macmillan Publishers Ltd., 2015), stem from the study of proton collisions at the CERN Large Hadron Collider (LHC) in Geneva, Switzerland.

Distinguished Professor Sheldon Stone says the discovery came about when two LHC experiments recently combined their results and found overwhelming evidence of an extremely rare decay of a particle known as the Bs meson, which contains a bottom, or "b," quark and an anti-strange quark. (Quarks are the basic building blocks of protons and neutrons and come in six different types, or flavors, including bottom quarks and strange quarks.) Their findings not only provide an indirect way to test new models of new physics, but also shed light on the Standard Model, a theory describing the physical makeup of the Universe.

"This new result confirms that a Bs meson decays into two muons, a rare process that is predicted to occur only four times out of every one billion decays," says Stone, who splits time between CERN and the University. "That we were able to get the same results from two different experiments significantly increases our confidence in the data."

Lately, Stone has been working at CERN, which is home to four large multinational experiments, each with its own detector for collecting data from CERN's LHC particle accelerator.

The two experiments with results on this topic are Compact Muon Solenoid (CMS), which, along with the ATLAS experiment, made Syracuse physicists aid in discovery of subatomic processs in 2012 with its discovery of the Higgs Boson, and Large Hadron Collider beauty (LHCb), whose detector is pushing the boundaries of the study of baryogenesis (i.e., the imbalance of matter and antimatter in the Universe).

Stone says this imbalance is important because, without it, the early Universe would have evolved much differently. "There would have been as many anti-particles as particles, and they would have annihilated each other, leaving nothing behind but pure energy," he says.

For more than a decade, Stone has led a team of Syracuse researchers on the LHCb experiment. Their work mainly involves particle decay, where one particle disintegrates, or decays, into another particle after a lifespan of a picosecond (i.e., one trillionth of a second). ??

"The CMS and LHCb experiments have been studying these particles, in hopes of looking for cracks in the Standard Model," says Stone, adding that b quarks are of particular interest because they are the heaviest quarks to form stable particles. "Any deviations [from the model] would be evidence of new physics at play, such as new particles or forces influencing the known particles' behavior."

Stone adds that, while the initial Bs meson result "mostly matches" the Standard Model prediction, it deviates just enough to leave him and others wondering if such a discrepancy could be amplified by more data.

"It's not way off the Standard Model prediction, but it's low enough to keep us questioning," says Joel Butler, a physicist at Fermilab, also the site of CMS activity. "We've been taking more data this spring and hope to eventually nail down the value. When we have two to four times more data from the next run of the LHC, things will start to get really interesting."

Scientists have also found some evidence of decay of another B meson--this one with a bottom quark and an anti-down quark - but its disintegration is much rarer, estimated to occur once out of every 10 billion decays.

B mesons have been of interest to Stone and Butler since the late 1990s, when they studied quarks at the CLEO experiment at Cornell University and charm quarks at the FOCUS experiment at Fermilab.

"Fourteen billion years ago, the Universe began with a bang, and matter and anti-matter were formed," Stone says. "Just one second after the Big Bang, anti-matter all but disappeared. LHCb seeks to find out what really happened after the Big Bang that has allowed matter to survive and build the universe we inhabit today."

 

 

Left-handed cosmic magnetic field could explain missing antimatter

 
‎24 ‎May ‎2015, ‏‎10:53:16 AMGo to full article
London, UK (SPX) May 21, 2015 - The discovery of a 'left-handed' magnetic field that pervades the universe could help explain a long standing mystery - the absence of cosmic antimatter. A group of scientists, led by Prof. Tanmay Vachaspati from Arizona State University in the United States, with collaborators at Washington University and Nagoya University, announce their result in Monthly Notices of the Royal Astronomical Society.

Planets, stars, gas and dust are almost entirely made up of 'normal' matter of the kind we are familiar with on Earth. But theory predicts that there should be a similar amount of antimatter, like normal matter, but with the opposite charge. For example, an antielectron (called a positron) has the same mass as its conventional counterpart, but a positive rather than negative charge.

In 2001 Prof. Vachaspati published theoretical models to try to solve this puzzle, which predict that the entire universe is filled with helical (screw-like) magnetic fields. He and his team were inspired to search for evidence of these fields in data from the NASA Fermi Gamma ray Space Telescope (FGST).

FGST, launched in 2008, observes gamma rays (electromagnetic radiation with a shorter wavelength than X-rays) from very distant sources, such as the supermassive black holes found in many large galaxies. The gamma rays are sensitive to effect of the magnetic field they travel through on their long journey to the Earth. If the field is helical, it will imprint a spiral pattern on the distribution of gamma rays.

Vachaspati and his team see exactly this effect in the FGST data, allowing them to not only detect the magnetic field but also to measure its properties. The data shows not only a helical field, but also that there is an excess of left-handedness - a fundamental discovery that for the first time suggests the precise mechanism that led to the absence of antimatter.

For example, mechanisms that occur nanoseconds after the Big Bang, when the Higgs field gave masses to all known particles, predict left-handed fields, while mechanisms based on interactions that occur even earlier predict right-handed fields.

Prof. Vachaspati commented: "Both the planet we live on and the star we orbit are made up of 'normal' matter. Although it features in many science fiction stories, antimatter seems to be incredibly rare in nature. With this new result, we have one of the first hints that we might be able to solve this mystery."

This discovery has wide ramifications, as a cosmological magnetic field could play an important role in the formation of the first stars and could seed the stronger field seen in galaxies and clusters of galaxies in the present day.

The new work appears in W. Chen et al., "Intergalactic magnetic field spectra from diffuse gamma rays", Monthly Notices of the Royal Astronomical Society, vol. 450, pp. 3371-3380, 2015, published by Oxford University Press.; Details of the earlier theoretical models appear in T. Vachaspati, "Estimate of the Primordial Magnetic Field Helicity", Physical Review Letters, vol. 87, p. 251302, 2001.

 

 

Researchers discover 'swing-dancing' pairs of electrons

 
‎24 ‎May ‎2015, ‏‎10:53:16 AMGo to full article
Pittsburgh PA (SPX) May 21, 2015 - A research team led by the University of Pittsburgh's Jeremy Levy has discovered electrons that can "swing dance." This unique electronic behavior can potentially lead to new families of quantum devices.

Superconductors, materials that permit electrical current to flow without energy loss, form the basis for magnetic resonance imaging devices as well as emerging technologies such as quantum computers. At the heart of all superconductors is the bunching of electrons into pairs.

Levy, Distinguished Professor of Physics and Pittsburgh Quantum Institute director, has discovered a long-postulated phase in which electrons form pairs but do not reach a superconducting state. The discovery provides fundamental new insights into a mechanism that could one day be used to design a material that is superconducting at room temperature.

Such a breakthrough would radically transform an array of technologies such as high-speed trains, energy-efficient power transmission, and computers that operate with negligible power requirements. The work, done in collaboration with researchers from the University of Wisconsin-Madison and the U.S. Naval Research Laboratory, will be published May 14 in the journal Nature.

One way to understand this novel state is to extend an analogy first articulated by J. Robert Schrieffer, who shared the 1972 Nobel Prize in Physics for the theory of superconductivity. In a superconductor, the motion of paired electrons is highly coordinated, similar to waltzing couples on a dance floor.

In the "normal" or non-superconducting state, electrons move independently, bumping into one another occasionally and dissipating energy. What the new research has identified is an in-between state where the electrons form pairs, but each pair moves independently. One may regard the electron pairs as "swing dancing" where dancing pairs hold hands but do not move in any synchronized fashion.

The first theory to describe how electrons pair without forming a superconducting state was published by David M. Eagles in 1969. Lead author and research assistant professor in the Levy lab, Guanglei Cheng, described how the theory was proven right: "The breakthrough comes from the technological advancement to fabricate superconducting single-electron transistors at an oxide interface--a technology that allows us to count electrons and pairs one by one. And this is just the beginning. We now have a novel platform to study the fascinating electron-electron correlations at nanoscale dimensions."

Levy and Cheng also worked with a research team led by Chang-Beom Eom at the University of Wisconsin-Madison and employed theoretical contributions from C. Stephen Hellberg at the U.S. Naval Research Laboratory. The research was supported by grants from the Air Force Office of Scientific Research and the National Science Foundation.

 

 

Researchers build new fermion microscope

 
‎24 ‎May ‎2015, ‏‎10:53:16 AMGo to full article
Boston MA (SPX) May 21, 2015 - Fermions are the building blocks of matter, interacting in a multitude of permutations to give rise to the elements of the periodic table. Without fermions, the physical world would not exist.

Examples of fermions are electrons, protons, neutrons, quarks, and atoms consisting of an odd number of these elementary particles. Because of their fermionic nature, electrons and nuclear matter are difficult to understand theoretically, so researchers are trying to use ultracold gases of fermionic atoms as stand-ins for other fermions.

But atoms are extremely sensitive to light: When a single photon hits an atom, it can knock the particle out of place - an effect that has made imaging individual fermionic atoms devilishly hard.

Now a team of MIT physicists has built a microscope that is able to see up to 1,000 individual fermionic atoms. The researchers devised a laser-based technique to trap and freeze fermions in place, and image the particles simultaneously.

The new imaging technique uses two laser beams trained on a cloud of fermionic atoms in an optical lattice. The two beams, each of a different wavelength, cool the cloud, causing individual fermions to drop down an energy level, eventually bringing them to their lowest energy states - cool and stable enough to stay in place. At the same time, each fermion releases light, which is captured by the microscope and used to image the fermion's exact position in the lattice - to an accuracy better than the wavelength of light.

With the new technique, the researchers are able to cool and image over 95 percent of the fermionic atoms making up a cloud of potassium gas. Martin Zwierlein, a professor of physics at MIT, says an intriguing result from the technique appears to be that it can keep fermions cold even after imaging.

"That means I know where they are, and I can maybe move them around with a little tweezer to any location, and arrange them in any pattern I'd like," Zwierlein says.

Zwierlein and his colleagues, including first author and graduate student Lawrence Cheuk, have published their results in the journal Physical Review Letters.

Seeing fermions from bosons
For the past two decades, experimental physicists have studied ultracold atomic gases of the two classes of particles: fermions and bosons - particles such as photons that, unlike fermions, can occupy the same quantum state in limitless numbers. In 2009, physicist Marcus Greiner at Harvard University devised a microscope that successfully imaged individual bosons in a tightly spaced optical lattice. This milestone was followed, in 2010, by a second boson microscope, developed by Immanuel Bloch's group at the Max Planck Institute of Quantum Optics.

These microscopes revealed, in unprecedented detail, the behavior of bosons under strong interactions. However, no one had yet developed a comparable microscope for fermionic atoms.

"We wanted to do what these groups had done for bosons, but for fermions," Zwierlein says. "And it turned out it was much harder for fermions, because the atoms we use are not so easily cooled. So we had to find a new way to cool them while looking at them."

Techniques to cool atoms ever closer to absolute zero have been devised in recent decades. Carl Wieman, Eric Cornell, and MIT's Wolfgang Ketterle were able to achieve Bose-Einstein condensation in 1995, a milestone for which they were awarded the 2001 Nobel Prize in physics. Other techniques include a process using lasers to cool atoms from 300 degrees Celsius to a few ten-thousandths of a degree above absolute zero.

A clever cooling technique
And yet, to see individual fermionic atoms, the particles need to be cooled further still. To do this, Zwierlein's group created an optical lattice using laser beams, forming a structure resembling an egg carton, each well of which could potentially trap a single fermion. Through various stages of laser cooling, magnetic trapping, and further evaporative cooling of the gas, the atoms were prepared at temperatures just above absolute zero - cold enough for individual fermions to settle onto the underlying optical lattice. The team placed the lattice a mere 7 microns from an imaging lens, through which they hoped to see individual fermions.

However, seeing fermions requires shining light on them, causing a photon to essentially knock a fermionic atom out of its well, and potentially out of the system entirely.

"We needed a clever technique to keep the atoms cool while looking at them," Zwierlein says.

His team decided to use a two-laser approach to further cool the atoms; the technique manipulates an atom's particular energy level, or vibrational energy. Each atom occupies a certain energy state - the higher that state, the more active the particle is.

The team shone two laser beams of differing frequencies at the lattice. The difference in frequencies corresponded to the energy between a fermion's energy levels. As a result, when both beams were directed at a fermion, the particle would absorb the smaller frequency, and emit a photon from the larger-frequency beam, in turn dropping one energy level to a cooler, more inert state. The lens above the lattice collects the emitted photon, recording its precise position, and that of the fermion.

Zwierlein says such high-resolution imaging of more than 1,000 fermionic atoms simultaneously would enhance our understanding of the behavior of other fermions in nature - particularly the behavior of electrons. This knowledge may one day advance our understanding of high-temperature superconductors, which enable lossless energy transport, as well as quantum systems such as solid-state systems or nuclear matter.

"The Fermi gas microscope, together with the ability to position atoms at will, might be an important step toward the realization of a quantum computer based on fermions," Zwierlein says. "One would thus harness the power of the very same intricate quantum rules that so far hamper our understanding of electronic systems."

This research was funded in part by the National Science Foundation, the Air Force Office of Scientific Research, the Office of Naval Research, the Army Research Office, and the David and Lucile Packard Foundation.

 

 

Physicists observe attosecond real-time restructuring of electron cloud in molecule

 
‎24 ‎May ‎2015, ‏‎10:53:16 AMGo to full article
Moscow, Russia (SPX) May 21, 2015 - The recombination of electron shells in molecules, taking just a few dozen attoseconds (a billionth of a billionth of a second), can now be viewed "live," thanks to a new method developed by MIPT researchers and their colleagues from Denmark, Japan and Switzerland. An article detailing the results of their study has been published in the journal Nature Communications.

In recent years, scientists have learned how to study ultrafast processes taking place at the atomic and molecular levels, and research in this field is expected to yield some very important results.

In Germany, for instance, scientists are creating the European X-Ray Free-Electron Laser (XFEL).Russia, too, is participating in the project. Once built, XFEL should give the scientists an opportunity to observe changes occurring in molecules' nuclei during chemical reactions, which matters a great deal for the study of biochemical processes and proteins' structural properties.

Two groups of scientists - experimentalists led by Professor Hans Jakob Wornerof the Swiss Federal Institute of Technology in Zurich and theoreticians from Denmark, Japan and Russia headed by MIPT's Oleg Tolstikhin - have joined their efforts to study attophysical processes, which are processes lasting several attoseconds (10^-18 seconds).

To track processes taking virtually no time to happen, the scientists used the so-called pump-probe method. First, a molecule was impulsively oriented with one laser pulse. Then a second powerful, low-frequency laser pulse ionized the molecule, which generated high harmonic radiation.

By looking at the high harmonic spectrum, Worner's group was able to see the restructuring of the molecule's electron shell caused by the ionizing pulse's strong field, which is a significant step forward for attosecond spectroscopy.

"With this method, we were able to track structural changes in the electron shells of methyl fluoride (CH3F) and methyl bromide (CH3Br)molecules," said Oleg Tolstikhin, associate professor at MIPT's Theoretical Physics Section. "These processes are even faster than chemical reactions, in which atomic nuclei move. In this experiment, we were able to see the restructuring of the electron shell."

The experimental set-up consisted of a sapphire laser with a wavelength of 800 nanometers, which generated short pulses of very high intensity (10^14-10^15 watts per cm2). The amplitude of the electromagnetic field in such pulses is comparable to that in an electric field, which "feels" the electron in a hydrogen atom.

The laser hit its targets - methyl fluoride and methyl bromide gas molecules in a vacuum chamber. The researchers then analyzed the spectrum of the generated high harmonics using X-ray and ultraviolet spectrometers.

"This was the first time ever that the evidence of the restructuring of a molecule's electron shell caused by its interaction with the strong field of an ionizing laser pulse was observed in the high harmonic spectrum," said Tolstikhin.

"The observed processes lasted a few tens of attoseconds. Identifying the traces of such processes in high harmonic spectra was possible thanks to our asymptotic theory of the tunneling ionization of molecules in the case of degenerate electronic states. Our theoretical model describes the experimental results pretty well."

Tolstikhin also explained that the scientists were unable, and are unlikely to ever be able, to see moving electrons -that's ruled out by the laws of quantum mechanics. But what they did see is how the electron cloud "migrated" within the molecule.

A key role in such "migration" is played by a permanent dipole moment and degenerate states of the outer electron in the molecule. This was the reason why the researchers chose methyl fluoride and methyl bromide molecules for their study.

The method of tracking attoseconds-long processes, demonstrated in the experiment, opens up new possibilities for studyingfine chemical processes, which can be of critical importance for molecular biology.

 

 

NSF and CERN sign new partnership for finding particles

 
‎24 ‎May ‎2015, ‏‎10:53:16 AMGo to full article
Washington DC (SPX) May 14, 2015 - A new agreement between the United States and the European Organization for Nuclear Research (CERN) will pave the way for renewed collaboration in particle physics, promising to yield new insights into fundamental particles and the nature of matter and our universe.

The agreement, signed in a White House ceremony by the U.S. Department of Energy, U.S. National Science Foundation (NSF) and CERN--the renowned European organization based in Geneva, Switzerland--will enable continued scientific discoveries in particle physics and advanced computing.

"CERN is a place for explorers, in the truest sense of the word," said NSF Director France A. Cordova. "The discoveries enabled by this world-class laboratory--insights into the standard model, into the fundamental nature of our universe--have yielded answers to some questions and produced new questions. This agreement renews NSF's commitment to CERN and sets the stage for future scientific discoveries."

"I am delighted to sign this agreement," said CERN Director General Rolf Heuer. "It allows us to look forward to a fruitful, long-term collaboration with the United States, in particular in guiding the Large Hadron Collider (LHC) to its full potential over many years through a series of planned upgrades. This agreement is also historic since it formalizes CERN's participation in U.S.-based programs such as prospective future neutrino facilities for the first time."

The agreement aligns European and American long-term strategies for particle physics that emphasize close international cooperation. This global relationship has already generated amazing results, through instruments such as the LHC at CERN and the Tevatron particle collider at Fermilab.

The LHC is best known for facilitating the discovery of the Nobel Prize-winning Higgs boson in 2012 and may reveal more information about this subatomic particle while providing the opportunity to discover other subatomic particles and learn more about the universe's composition.

"Today's agreement not only enables U.S. scientists to continue their vital contribution to the important work at CERN, but it also opens the way to CERN's participation in experiments hosted in the United States," said Energy Secretary Ernest Moniz. "As we've seen, international collaboration between the United States and CERN helps provide a foundation for groundbreaking discoveries that push crucial scientific frontiers and expand our understanding of the universe."

CERN and the United States have a long history of collaboration: American physicist Isidor Rabi was one of CERN's founders, and American scientists have been involved in CERN projects since the institution's creation in the early 1950s. CERN provided equipment for U.S. projects, such as Brookhaven National Lab's Relativistic Heavy Ion Collider--used for nuclear physics research--and European scientists were critical to the success of U.S.-based particle colliders, like Tevatron.

"Society and the global research community benefit greatly from productive scientific cooperation across borders," said John P. Holdren, director of the White House Office of Science and Technology Policy. "Today's agreement is a model for the kinds of international scientific collaboration that can enable breakthrough insights and innovations in areas of mutual interest."

This agreement will automatically renew every five years unless one of the signatories indicates a need to modify or end the agreement.

 

 

The weakest magnetic field in the solar system

 
‎24 ‎May ‎2015, ‏‎10:53:16 AMGo to full article
Munich, Germany (SPX) May 15, 2015 - Magnetic fields easily penetrate matter. Creating a space practically devoid of magnetic fields thus presents a great challenge. An international team of physicists has now developed a shielding that dampens low frequency magnetic fields more than a million-fold. Using this mechanism, they have created a space that boasts the weakest magnetic field of our solar system. The physicists now intend to carry out precision experiments there.

Magnetic fields exist everywhere in the universe. Here on the Earth, we are permanently exposed to both natural and artificial magnetic fields. In Central Europe the Earth's ever-present magnetic field measures 48 microtesla. On top of this come local magnetic fields generated by transformers, motors, cranes, metal doors and the like.

A group of physicists headed by Professor Peter Fierlinger, physicist at the Technische Universitat Munchen (TUM) and researcher of the Cluster of Excellence "Origin and Structure of the Universe" have now successfully created 4.1 cubic meter space at the Garching research campus in which permanent and temporally variable magnetic fields are reduced over a million-fold.

This is accomplished using a magnetic shielding comprising various layers of a highly magentizable alloy. The ensuing magnetic attenuation results in a residual magnetic field inside the shield that is even smaller than that in the depths of our solar system. The approach improves the attenuation of previous set-ups more than ten-fold.

Precision experiments on the electric dipole moment of the neutron
Reducing electromagnetic noise is a key prerequisite for many high-precision experiments in physics - but also in biology and medicine. In fundamental physics, the highest degree of magnetic shielding is essential when making precision measurements of miniscule effects in phenomena that drove the early development of our universe.

Peter Fierlinger's team is currently developing an experiment to determine the charge distribution in neutrons -referred to by physicists as the electric dipole moment. Neutrons are nuclear particles that have a tiny magnetic moment but are electrically neutral. They comprise three quarks, whose charges cancel each other out.

However, scientists suspect that neutrons have a tiny electric dipole moment. Unfortunately, past measurements were not sufficiently precise. The new, nearly magnetic field free space provides the requisite conditions for improving measurements of the electric dipole moment by a factor of 100. This opens the door to a realm of the theoretically predicted scale of the phenomenon.

Physics beyond the limits oft the Standard Model
"This kind of measurement would be of fundamental significance in particle physics and swing wide open the door to physics beyond the Standard Model of particle physics," explains Peter Fierlinger. The Standard Model describes the characteristics of all known elementary particles to a high degree of precision.

Yet, there are still phenomena that cannot be adequately explained: Gravity, for example, is not even considered in this model. The Standard Model also fails to predict the behavior of particles at very high energies as they prevailed in the early universe. And, it provides no explanation for why matter and antimatter from the Big Bang did not annihilate each other completely, but rather a small amount of matter remained from which we and our surrounding, visible universe are ultimately formed.

Physicists therefore attempt to create short-lived conditions as were prevalent in the early universe using particle accelerators like the Large Hadron Collider (LHC) at CERN. They smash particles into each other at high energies, in particular to create new particles.

Alternatives to high-energy physics
The experiments of the TUM scientists complement those in high-energy physics: "Our high-precision experiments investigate the nature of particles at energy scales that will likely not be reached by current or future generations of particle accelerators," says doctoral candidate Tobias Lins, who worked on the magnetic shield setup in Peter Fierlinger's laboratory.

Exotic and hitherto unknown particles could alter the properties of known particles. Thus, even small deviations in particle characteristics could provide evidence for new, previously unknown particles.

In addition to scientists of TU Munchen, physicists of the Physikalisch-Technischen Bundesanstalt Berlin, the University of Illinois at Urbana-Champaign, USA, the University of Michigan, USA, and IMEDCO AG in Switzerland contributed to the experimental setup and measurements of magnetic attenuation. Funding was provided by the German Research Foundation (DFG) in the context of the Priority Program SPP 1491 and the Custer of Excellence Origin and Structure of the Universe. I. Altarev et al.: A large-scale magnetic shield with 10^6 damping at mHz frequencies; Journal of Applied Physics, May 12, 2015 - DOI: 10.1063/1.4919366.

 

 

Probing the secrets of the universe inside a metal box

 
‎24 ‎May ‎2015, ‏‎10:53:16 AMGo to full article
Washington DC (SPX) May 15, 2015 - The Standard Model of particle physics, sometimes called "The Theory of Almost Everything," is the best set of equations to date that describes the universe's fundamental particles and how they interact. Yet the theory has holes - including the absence of an adequate explanation for gravity, the inability to explain the asymmetry between matter and antimatter in the early universe, which gave rise to the stars and galaxies, and the failure to identify fundamental dark matter particles or account for dark energy.

Researchers now have a new tool to aid in the search for physics beyond the good, but yet incomplete Standard Model. An international team of scientists has designed and tested a magnetic shield that is the first to achieve an extremely low magnetic field over a large volume. The device provides more than 10 times better magnetic shielding than previous state-of-the art shields.

The record-setting performance makes it possible for scientists to measure certain properties of fundamental particles at higher levels of precision - which in turn could reveal previously hidden physics and set parameters in the search for new particles.

High precision measurements are one of three frontiers to search for physics beyond the Standard Model, explained Tobias Lins, a doctoral student who worked on the new magnetic shield in the research lab of Professor Peter Fierlinger at the Technische Universitat Munchen in Germany.

The precision measurements complement other methods to search for new physics, including slamming particles together in a collider to generate new, high-energy particles, and peering into space to catch signals from the early universe.

"Precision experiments are able to probe nature up to energy scales which might not be accessible by current and next generation collider experiments," Lins said. That's because the existence of exotic new particles can slightly alter the properties of already known particles. A tiny deviation from the expected properties may indicate that an as-yet-undiscovered fundamental particle inhabits the "particle zoo."

Constructing the Shield
The researchers built the new shield out of several layers of a special alloy, composed of nickel and iron, that has a high degree of magnetic permeability - meaning it can act like a sponge to absorb and redirect an applied magnetic field, like the earth's own magnetic field or fields generated by equipment such as motors and transformers.

"The apparatus might be compared to cuboid Russian nesting dolls," Lins said. "Like the dolls, most layers can be used individually and with an increasing number of layers the inside is more and more protected."

The team's big breakthrough came from in-depth numerical modeling of the arrangement of the precision treated magnetizable alloy, resulting in significantly optimized design details, like thickness, connections and spacing of layers.

The materials in magnetic shields change their magnetization due to environmental influences, like temperature changes and vibrations caused by passing cars, and these shifts can be passed to the inside of the shield.

The thinner sheets in the new design enabled a better balancing of the magnetic field in the metal, resulting in the smallest and most homogenous magnetic field ever created within the shielded space, even beating the average ambient magnetic field of the interstellar medium.

New Experiments Ahead
Plans are already underway to use the new magnetic shield in an experiment to test limits for the distribution of charges (called the electric dipole moment, or EDM) of an isotope of xenon. An EDM that is higher than predicted by the Standard Model could signal the existence of a new particle whose mass is linked to the amount by which the EDM deviates from the expected value.

The researchers also want to use a modified SQUID detector - which can detect extremely subtle magnetic fields - to search for long theorized, but never detected magnetic monopoles. Within the magnetically quiet space inside the shield, a monopole passing by the SQUID might produce a magnetic field higher than the background noise level, Lins said.

The article, "A large-scale magnetic shield with 10^6 damping at millihertz frequencies," is authored by I. Altarev, M. Bales, D. H. Beck, T. Chupp, K. Fierlinger, P. Fierlinger, F. Kuchler, T. Lins, M. G. Marino, B. Niessen, G. Petzoldt, U. Schlapfer, A. Schnabel, J. T. Singh, R. Stoepler, S. Stuiber, M. Sturm, B. Taubenheim and J. Voigt. It will be published in the Journal of Applied Physics on May 12, 2015 (DOI: 10.1063/1.4919366).

 

 

 
 

AKARI far-infrared all-sky data released

 
‎10 ‎May ‎2015, ‏‎09:17:23 AMGo to full article
Paris (ESA) May 09, 2015 - The AKARI space telescope's far-infrared all-sky image data are now available to researchers everywhere. The new all-sky maps have four to five times better spatial resolution than conventional far-infrared all-sky images, and include data at longer wavelengths.

AKARI, formerly known as ASTRO-F, is the second space mission for infrared astronomy from the Institute of Space and Astronautical Science (ISAS) of the Japanese Aerospace Exploration Agency (JAXA). It was realised with ESA participation.

AKARI's main objective was to perform an all-sky survey with better sensitivity, spatial resolution and wider wavelength coverage than IRAS, the Infrared Astronomical Satellite (IRAS) launched on 25 January 1983.

Although having been launched more than 30 years ago, the IRAS all-sky maps are still a standard resource for modern astronomers. Now, AKARI's maps improve on IRAS by a factor of four or five.

AKARI was launched on 21 February 2006. To achieve the sensitivity needed to make its maps, the telescope's detector had to be cooled to -271 C. Because the spacecraft could only carry 170 litres of coolant, this meant it had a limited lifetime.

During its 'cold' lifetime of 550 days it conducted the all-sky survey, observing more than 99% of the entire sky, with 1 to 1.5 arcminute resolution, in four wavelengths: 65, 90, 140 and 160 micrometers. This provides an excellent scientific legacy because these data also provide photometric information for about half a million sources.

Far-infrared light is the key wavelength range for investigating the formation of stars and planetary systems. It is emitted mostly from low-temperature dust and so reveals the distribution of the interstellar medium, as well as the processes of star formation within it.

In addition, the observations of various galaxies at far-infrared wavelengths allow scientists to explore the history of star formation in the Universe. Furthermore, closer examination of the distribution of the interstellar medium allows scientists to measure precisely cosmic background radiation, which is essential to investigate the origin of the Universe.

By combining AKARI data with data from ESA's other infrared space telescopes, ISO and Herschel, scientists can also look for variability in celestial sources.

The PACS instrument on Herschel covers a similar wavelength region to AKARI and achieved a greater spatial resolution in its observations. However, PACS was not designed to study the whole sky: it has observed some 7% of the sky at wavelengths of 70, 100 and 160 micrometers, compared with AKARI's 99% coverage, underlining how useful the new AKARI data will be.

The AKARI far-infrared all-sky image maps have been calibrated and prepared for public release by the research group of Dr Yasuo Doi, Assistant Professor at the Graduate School of Arts and Sciences, the University of Tokyo, and collaborators at the Institute of Space and Astronautical Science/JAXA, Tohoku University, University of Tsukuba, Rutherford Appleton Laboratory and the Open University (UK).

The full data sets can be accessed here

 

 

Quantum mechanical helium trio

 
‎10 ‎May ‎2015, ‏‎09:17:23 AMGo to full article
Frankfurt, Germany (SPX) May 09, 2015 - In 1970, Vitaly Efimov analysed a three-body quantum system in which the attraction between two bodies reduced such that they become unbound. His prediction was that instead of breaking up, the molecule consisting of three particles can support an infinite number of bound states with huge distances between the binding partners. "Every classical notion as to why such a structure remains stable fails here", explains Prof. Reinhard Dorner, head of the research group at the Institute for Nuclear Physics.

This counter-intuitive prediction led to the currently booming field of "Efimov physics". It soon became apparent that a system consisting of three helium atoms, a so-called trimer, would be the prime example of this quantum mechanical effect. But all experiments conducted to prove the existence of the gigantic, extremely weakly bound helium system failed.

In 2006, physicists at the University of Innsbruck first found indirect indications of Efimov systems in cold quantum gases of caesium atoms. In the atom traps they used, the interaction between the particles can be externally controlled. Efimov systems, however, as soon as they appear, are ejected from the artificial environment of the trap and fall apart unseen.

The Frankfurt physicist Dr. Maksim Kunitski, of the research group of Prof. Dorner has now produced a stable Efimov system consisting of three helium atoms, by pressing gaseous helium at a temperature of only eight degrees above absolute zero through a tiny nozzle into a vacuum. In this ultracold molecular beam, helium molecules with two, three or more helium atoms are formed. By diffraction of the molecular beam at a super-fine transmission grating, the physicist was able to spatially separate the trimers.

The researchers created an exploded view of this Efimov state which directly show the structure of and, in particular, the distances between the atoms in the trimer. They ionized each helium atom of the molecule with the help of a laser beam.

Due to the electrostatic repulsion, the now triply positively charged trimer broke apart explosively. Subsequently, using the COLTRIMS microscope developed at the Goethe University, researchers measured the momenta of the helium ions in three-dimensions, which allowed to reconstruct the geometry of the trimer.

In collaboration with the theoretician Doerte Blume of Washington State University in the USA, Maksim Kunitski found out that only one of the many possible Efimov states had in fact occurred naturally in the molecular beam.

The distances between bonds in the huge molecule extend to more than 100 angstroms (compared to a mere two angstroms in a water molecule). Thereby, the helium atoms do not form an isosceles triangle, but are arranged asymmetrically. That correlates well with the theoretical predictions that have already existed for many years.

"This is the first stable Efimov system that has ever been discovered. The three-body system flies through the laboratory inside the vacuum chamber without further interaction and without the need for external fields", Dorner explains. "Maksim Kunitski has conducted this ground breaking work in a laser laboratory at the Goethe University Frankfurt. He did not need a big machine to accomplish this."

"The Efimov state is not an exotic special case, but rather an example of a universal quantum effect that plays an essential role in many areas of physics", Kunitski explains. Examples of this are cold atoms, clusters, nuclear physics and recently also solid-state physics. Moreover, there are also first reports about its significance in biology.

Reinhard Dorner could afford to tackle a research project that was so risky with respect to its prospects of success because in 2009 the German Research Foundation (DFG) made 1.25 million Euros available as part of its Koselleck programme.

"It was a rather bold plan", says Dorner in retrospect, "but now, at the end of the project and really only because the DFG provided me with this large amount for a risky project without detailed planning - the search was successful."

DOI: 10.1126/science.aaa5601

 

 

Zooming in on an individual orbiting electron

 
‎10 ‎May ‎2015, ‏‎09:17:23 AMGo to full article
Santa Barbara CA (SPX) May 09, 2015 - The microwave oven has been around for almost 80 years. When it heats food or liquid, the frequency of electrons increases but their energy slows down due to their own microwave emissions. Until now, scientists have only been able to observe this phenomenon in a group of electrons.

However, Project 8, a collaboration of 27 scientists from six institutions in the United States and Germany, has for the first time been able to detect the frequency of radiation emitted by an individual, orbiting electron. The group's findings appear in the journal Physical Review Letters.

"One of the reasons our result is exciting is that it gives us a new way of capturing electrons to use as a back door into studying neutrinos," said Benjamin Monreal, an assistant professor in UC Santa Barbara's Department of Physics. "We hope it will lead to a measurement of the neutrino mass, which is currently one of the last remaining unknowns in the Standard Model of particle physics."

The second-most abundant particles in the universe, neutrinos lack an electric charge and are produced by the decay of radioactive elements. They come in three varieties: electron, muon and tau, each with a different, still-unknown mass. While the differences between the mass of each type of neutrino can be calculated, scientists at this point in time only know the range into which measurement of these masses will fall. Once refined, the technique developed by Project 8 has the potential to make the first direct measurement of the mass of the neutrino.

Previous electron detection and energy measurements required enormous spectrometers to measure radiation. Project 8 collaborators may have changed that. Not only were they able to detect emissions from a single electron but they did so using a tabletop instrument.

The team built a small apparatus to contain a single high-energy electron in a magnetic field containing krypton-83, a radioactive isotope that produces electrons as its nuclei undergo beta decay. Electrons from the radioactive decay move extremely fast, at 20 percent of the speed of light, and spiral in a magnetic field. Each electron emits a signal that can be measured very accurately using radio waves.

Called cyclotronic radiation, this effect was predicted more than 100 years ago but has only now been observed one electron at a time. In fact, the team was able to witness the activity of more than 100,000 single electrons.

"We were able to trap an electron for about 10 milliseconds, which doesn't sound like very long," Monreal said, "but it's actually taking a little 30-kilometer journey going around and around in circles. Nobody's ever been able to zoom in on a single electron before."

When the electron bumps into a gas molecule, it jumps and loses a fraction of its energy, which in turn increases its frequency. This sequence of events produces a characteristic chirp, which can be seen when frequency is plotted against time.

"We were able to take a single electron and see it scatter 20 times and measure every little energy change," Monreal said. "Sometimes we could see it changing directions slightly."

According to Monreal, Project 8 has found a new use of basic electromagnetism. The equation used by the investigators was first published in 1904. "It's very, very old electromagnetism that we're just pushing to the edge of the smallest charge that you can see with it," Monreal explained.

"We have a new tool for studying radioactive decays," he added. "For the future, the decay we're most interested in is tritium, which is a radioactive isotope of hydrogen. Every time it decays, it emits an electron and a neutrino and you can detect those electrons. One day our instrument will be able to measure those electrons. If you can measure electron distribution precisely enough, you can figure out neutrino mass, which we've been talking about for 80 years now."

Measuring neutrino mass may be the ultimate goal of Project 8, but the team's method also has the potential to be used for environmental monitoring of nuclear fuel.

 

 

Quantum-mechanical monopoles discovered

 
‎10 ‎May ‎2015, ‏‎09:17:23 AMGo to full article
Espoo, Finland (SPX) May 09, 2015 - Researchers at Aalto University (Finland) and Amherst College (USA) have observed a point-like monopole in a quantum field itself for the first time. This discovery connects to important characteristics of the elusive monopole magnet. The results were just published in Science magazine.

The researchers performed an experiment in which they manipulated a gas of rubidium atoms prepared in a nonmagnetic state near absolute zero temperature. Under these extreme conditions they were able to create a monopole in the quantum-mechanical field that describes the gas.

'In this nonmagnetic state, a structure was created in the field describing the gas, resembling the magnetic monopole particle as described in grand unified theories of particle physics. Previously, we have used the gas to detect a monopole within a so-called synthetic magnetic field, but there has been no monopole in the quantum field describing the gas itself. Now we have finally witnessed the quantum-mechanical monopole!', enthuses Dr. Mikko Mottonen, Aalto University.

'In the nonmagnetic state of the gas, no quantum whirlpools or monopoles are created in the synthetic magnetic field. However, quantum-mechanical magnetic order prevails in the sample, and we were able to manipulate this with adjustments to an externally applied magnetic field', Mottonen continues.

'The control of those magnetic fields must be stable to a small fraction of the size of the Earth's magnetic field', adds Prof. David Hall, Amherst College. 'The main experimental challenge we faced is to prepare the ultracold gas under highly sensitive conditions, in which field fluctuations due to the motion of metal objects or power line variations can make observation of the monopoles difficult.', Hall continues.

The result is a remarkable step forward in quantum research. It is important to understand the structure of monopoles and other topological entities, in part because they appear in the models describing the early universe and affect the properties of many different materials, such as metals.

The discovery of a magnetic monopole particle is still in the future. This new result establishes that the structure of a quantum mechanical monopole does appear in nature, and therefore it further supports the possibility that magnetic monopoles exist.

 

 

Game theory elucidates the collective behavior of bosons

 
‎10 ‎May ‎2015, ‏‎09:17:23 AMGo to full article
Munich, Germany (SPX) May 01, 2015 - Quantum particles behave in strange ways and are often difficult to study experimentally. Using mathematical methods drawn from game theory, physicists of Ludwig-Maximilias-Universitaet (LMU) in Munich have shown how bosons, which like to enter the same state, can form multiple groups.

When scientists explore the mysterious behavior of quantum particles, they soon reach the limits of present-day experimental research. From there on, progress is only possible with the aid of theoretical ideas.

NIM investigator Professor Dr. Erwin Frey and his team at the Dept. of Statistical and Biological Physics (LMU Munich) have followed this route to study the behavior of bosons. Bosons are quantum particles that like to cluster together. But by applying methods from the mathematical field of game theory, the Munich physicists were able to explain why and under what conditions bosons form multiple groups.

Social bosons
There are two kinds of quantum particles in nature: fermions and bosons. Whether a particle is a fermion or a boson depends on its intrinsic angular momentum or spin. For fermions, the spin is always half-integer valued and the most prominent example is the electron. Bosons, on the other hand, always exhibit integer spins. Such is the case for photons, for example, but also whole atoms may be bosons.

Bosons are social beasts that like to be on the same wavelength - or, as physicists put it, they like to be in the same quantum state. When bosons are cooled to a temperature of -273.15C, close to absolute zero, they may even start to behave as a single "super-particle". The reason why that happens is that, at such low temperatures, all bosons want to settle into the lowest possible energy state.

This super-particle is called a Bose-Einstein condensate, where the term condensate denotes a group of particles that all behave in the same way. That it should be possible to create such a condensate was first proposed theoretically by Bose and Einstein in 1924. During the 1990s, experimentalists studying ultracold atomic gases eventually confirmed this long-standing prediction.

Group formation
Only recently have scientists come up with the theory that a collection of bosons should be capable of forming multiple condensates. In order for this to happen, however, the bosons need to be in an open system into which energy is periodically pumped from the outside - for example by a laser - and each boson may release energy into the environment. In the current issue of "Nature Communications", Erwin Frey and his team explain why bosons group into multiple condensates in such non-equilibrium systems.

The rules of the game
The phycisists from Munich explained the formation of multiple groups by applying one of its specialties: game theory. Researchers use this mathematical theory for a diverse range of purposes.

The strength of game theory lies in its ability to explain the behavior and interactions of collectives. Each member has its own strategy - whether that "agent" be a predator stalking its prey, or a participant in the children's game rock-paper-scissors who chooses to play the "rock" strategy.

Owing to its simplicity, the rock-paper-scissors game serves as one of the most prominent models in game theory, but the theory also describes more serious decision-making processes and opinion formation in groups. Now Erwin Frey and his team have shown that even the behavior of bosons can be understood in the context of game theory. And this insight has led them to the physical principle underlying the condensation of bosons into multiple states.

Order emerges with time
"Our theory is based on an intuitive concept", explains Johannes Knebel, PhD student in Frey's group. "At first, all bosons do their own thing. But because energy is allowed to flow in and out of the system, the bosons eventually group into particular quantum states, whereas the other states become depleted. Similarly, when many players with different strategies compete against each other, only the successful strategies prevail.

"The other strategies vanish over time. In a round-table discussion, the same dynamics may be observed. At first, everybody has a different opinion, but only a few opinions will eventually be shared by most of the debaters, and these will often continue to coexist side by side." Hence, order emerges with time. The Munich physicists formulate the evolution of order in terms of the decrease of a relative measure of entropy, which guides the collective behavior of the bosons.

From theory to experiment
The scientists are now eager to learn more about the nature of quantum systems: "A direct application of our findings is not yet at hand," says Erwin Frey.

"However, it is not unusual for this kind of basic research to lead to completely unexpected discoveries, opening the door to new developments. For example, research on the collective behavior of bosons has already contributed to the understanding of superfluidity and paved the path to the development of technologies like superconductivity".

The exciting question now is whether the theorists' predictions will be confirmed or disproved by experimentalists. Experiments with ultracold atomic gases, such as those being conducted in the group led by NIM investigator Prof. Immanuel Bloch (LMU Munich and Max-Planck-Institute for Quantum Optics), offer promising candidates to study bosons out of equilibrium.

 

 

Cyclotron radiation from single electrons measured directly for first time

 
‎10 ‎May ‎2015, ‏‎09:17:23 AMGo to full article
Richland WA (SPX) May 05, 2015 - A year before Albert Einstein came up with the special theory of relativity, or E=mc2, physicists predicted the existence of something else: cyclotron radiation. Scientists predicted this radiation to be given off by electrons whirling around in a circle while trapped in a magnetic field. Over the last century, scientists have observed this radiation from large ensembles of electrons but never from individual ones.

A group of almost 30 scientists and engineers from six research institutions reported the direct detection of cyclotron radiation from individual electrons April 20 in Physical Review Letters. They used a specially developed spectroscopic method that allowed them to measure the energy of electrons, one single electron at a time.

Besides the excitement of actually detecting this radiation from a single fundamental charged particle - the electron - the method provides a new way to potentially measure the mass of the neutrino, a subatomic particle that weighs at most two-billionths of a proton.

"One of the biggest problems in physics today is the unknown mass of the neutrino," said physicist Brent VanDevender, lead scientist from the Department of Energy's Pacific Northwest National Laboratory. "The universe is full of neutrinos. There are so many of them that it matters how much they weigh. Even at two-billionths of a proton mass they would outweigh all of the other normal matter in the universe like stars, planets and dust, and affect the formation of large-scale structures like galaxy clusters."

Within the atom
Physicists are trying to understand some of the smallest parts of the universe. Typical atoms - which make up all matter - contain a nucleus surrounded by a cloud of electrons. The nucleus holds positively charged particles called protons and inert particles called neutrons, which give the atom heft. Electrons are negatively charged and zip around the nucleus.

These particles might appear unrelated, but the inert neutrons sometimes turn into protons in what is called beta decay. The proton stays behind while an electron and a neutral bit called a neutrino zip away into the universe.

Because they are so small and carry no charge, neutrinos are hard to measure. Currently, scientists have determined the heaviest a neutrino can be. Comparing the mass of a neutrino to a neutron would be like comparing a toddler to the Great Pyramid of Giza.

There are several efforts currently under way to detect and measure the neutrino mass directly, such as the KATRIN nuclear physics experiment in Germany. These efforts are huge, enlisting hundreds of researchers and building analytical instruments the size of a large house. Even so, there's a chance that the neutrino will be too small to be detected by such experiments.

About five years ago, two of the co-authors on this study proposed that perhaps instead of detecting neutrinos, or even electrons directly, they could come at the problem sideways by measuring electrons' cyclotron radiation, which can reveal an electron's energy.

If they measure, with enough precision, electrons emitted when a hydrogen carrying two extra neutrons - a tritium atom - beta decays to helium-3, they could infer the mass of a neutrino by adding up the energies of the helium-3 and an electron, and comparing that to a tritium atom. If they don't add up to a whole tritium atom, the difference must be the neutrino mass.

Measuring mass with energy? Yes, thanks to Einstein and special relativity. Because mass and energy are related, the team can measure the energy of electrons and get at mass that way. Gathering a few dozen collaborators into Project 8, the team developed a new method called Cyclotron Radiation Emission Spectroscopy to do so, and demonstrated it in this study.

CRES to impress
The instrument the team developed stands about as tall as a few wine barrels stacked on top of each other, much smaller than a house. To maximize their odds of success, they started with the best possible conditions. They chose an atom that would give them clean and easy to read spectroscopic information. That atom, a form of krypton called metastable krypton-83 (or 83mKr), would decay and give them lots of electrons that they could capture in their magnetic field.

As they trapped single electrons in the field, they measured how fast they zipped around in a circle, which led them to the electron energy. The energy they measured for the krypton electrons came in at the expected 30.4 kilo-electron-volts. Their precision was within 0.05 percent of the target - not tight enough to infer neutrinos, but a very good start.

"Neutrino mass is tiny so the spectroscopy has to be exquisite. We have to do about 10 times better in the end," said VanDevender.

They didn't expect enough precision to measure the neutrino in this prototype experiment, he said, so the most exciting result for now was detecting cyclotron radiation.

"Nobody ever really doubted its existence, but it is still cool to be the first to observe a basic phenomenon of nature. This is a prediction that has been hanging out there since 1904 and it took 110 years for somebody to confirm at the level of individual fundamental particles," said VanDevender.

Beta test
VanDevender predicted it will take another decade to get a measurement for the neutrino mass, and it's possible KATRIN might weigh it first. The next step is to repeat the krypton experiments they did with tritium.

Once they've mastered that, they will have to figure out how to scale up to accommodate more tritium in much larger volumes to get the information they need to determine the neutrino mass.

In addition to PNNL, researchers at the following institutions contributed to this study: National Radio Astronomy Observatory, Charlottesville, VA, University of California, Santa Barbara, University of Washington, Seattle, Massachusetts Institute of Technology, Cambridge, and Institut for Kernphysik, Karlsruher Institut for Technologie, Karlsruhe, Germany.

 

 

Towards the realization of a global neutrino infrastructure

 
‎10 ‎May ‎2015, ‏‎09:17:23 AMGo to full article
Paris, France (SPX) May 05, 2015 - The agency1 representatives and laboratory directors2 gathered at the 2nd International Meeting on Large Neutrino Infrastructures3 hosted at Fermilab on 20-21 April 2015, reiterated their firm belief that neutrino physics is a worldwide research priority in fundamental physics.

As was stated by the Nobel Prize winner Carlo Rubbia at the meeting: "The neutrino together with the Higgs, are so far the only elementary particles whose basic properties are still largely unknown".

The complexity of the questions concerning the nature of the neutrino and its impact on the knowledge and understanding of our universe, demands a coherent program, ranging from large infrastructure deployment to small scale projects. This complexity continues to be a constant source of innovation in accelerator, particle detection and underground technologies, with significant societal applications.

Furthermore, the parallel increase in precision of the terrestrial neutrino program and of cosmological surveys, measuring the impact of neutrinos in cosmic structure formation, is a major avenue to probe new physics beyond the Standard Models of Fundamental Interactions and/or Cosmology.

During the 1st Meeting of last year the agencies had invited the neutrino scientific community to develop urgently a coherent international program in the long-baseline oscillation accelerator field, consistent with the recommendations of the European Strategy for Particle Physics and the HEPAP/P54 report.

In the 2nd meeting, organized by Fermilab and APPEC5 , the agency representatives were impressed by the rapidity, quality of convergence and momentum of the efforts of the community working on liquid argon Time Protection Chambers (LAr TPCs), to develop a credible scientific program based on:

a) an ambitious large infrastructure effort, consisting of a long-baseline beam and detector project (LBNF/DUNE6) hosted at Fermilab and SURF7, based on previous design studies , but largely upgrading them, proposed by an international collaboration, very rapidly setting up its governance structure and preparing answers to an aggressive schedule of DOE critical design reviews in July and November 2015;

b) a medium-scale program of short-baseline oscillation experiments at Fermilab (Short-Baseline Near Detector, MicroBoone8 and ICARUS9) aiming to test the sterile neutrino hypothesis with unprecedented accuracy;

c) a rich R and D and prototyping program in the CERN North Area, related to the above program along with other long-baseline efforts in the world (e.g. Hyper-Kamiokande10).

The agencies and national laboratory directors welcomed the proposed measures to complement the establishment of the international collaboration for LBNF/DUNE with appropriate agency oversight bodies: the Long-baseline Neutrino Committee (LBNC), the Resource Review Board (RRB) and an International Advisory Committee (IAC).

In addition they appreciated the progress towards the realization of the Hyper-Kamiokande experiment. An international proto-collaboration encompassing the cosmic ray and particle physics communities has been formed with large international participation and largely complementary to the LBNF/DUNE US-based program. A Memorandum of Understanding between IPNS/KEK and ICRR, University of Tokyo regarding cooperation in promoting Hyper-Kamiokande was recently signed.

The Hyper-Kamiokande detector design, based on the well-established water Cherenkov detection technique, is being optimized by the international collaboration and a design report will be prepared in 2015 in view of the next immediate milestone of an international review under IPNS/ICRR.

The agencies noted the complementarity of the large detectors using different detection techniques (water, liquid argon and liquid scintillator) in the program of neutrino parameter measurements but also, and above all, in the domain of proton decay and neutrino astrophysics. Furthermore, the complexity of the neutrino sector is such that the larger programs need to be complemented by small and medium scale programs.

The overall coherence between these programmes will guarantee an understanding of whether the Standard Model with 3 neutrino flavors is the one realized in Nature or, conversely, establish a ground-breaking discovery.

In this context, one should consider the importance of the reactor and source neutrino experiments attempting to clarify the "reactor anomaly", possibly due to sterile neutrinos, or the proposed measurements of the neutrino mass hierarchy by atmospheric (PINGU11,ORCA12, INO13) and reactor neutrinos (JUNO14,RENO-5015). The agencies also took note of the good progress in the evaluation of systematics affecting the measurements of the neutrino mass-hierarchy by PINGU and ORCA and encouraged their further coordination actions.

Finally, there is a rich and diverse physics program in the development of single beta and neutrino-less double beta decay experiments exploring the degenerate neutrino mass region till the end of this decade. The ambitious goal for neutrino-less double-beta decay in the next decade will be the coverage in sensitivity of the inverted mass-hierarchy region.

Achieving this goal will require ton-scale detectors and may require large-scale enrichment of isotopes, boosting the scale of the infrastructures and, hence, demanding large international collaborations for their construction. This coordination would involve an effort similar to the one performed for the long-baseline program, but still requires the continuation of the current measurements and R and D work for the next two or three years.

It further implies the coordination with agencies not currently present at the 2nd International Neutrino Meeting. In view of the above, the agencies will deploy the necessary efforts so that all major stakeholders coordinate in the next years in the effort to identify the most promising technologies for ton-scale detector(s) whose construction could start towards the end of this decade.

The agencies and the laboratory directors thanked the Neutrino ICFA panel16 as well as the IUPAP working group of APPIC17 for accompanying the process and providing key advice and insight on the program.

The 3rd International Neutrino Meeting on Large Neutrino Infrastructures, to review progress towards these aims, will take place in Japan in early 2016 at a venue to be decided later this year.

Notes
1 In the meeting the agencies were represented by (in agency alphabetical order): J. Siegrist (associate director Department Of Energy, DOE), R. Pain (deputy director Institut National de Physique Nucleaire et Physique des Particules, IN2P3/CNRS), A. Masiero (deputy director Insituto Nationale de Fisica Nucleare, INFN), H. Tanaka (representing the National Science and Engineering Research Council of Canada, NSERC), J. Seed (Associate Director of Science and Technology Facilities Council, STFC, UK), A. Ereditato (representing SNFS and SERI, Switzerland). H. J Donath from PT-DESY representing BMBF Germany. R. Davidson and G. Leveque (Vice-president and Director of programs respectively of the Canada Foundation of Innovation, CFI) participated as observers. APPEC was represented by its chair F. Linde.

2 In the meeting the directors of laboratory present were (in laboratory alphabetical order): F. Gianotti director-general elect and S. Bertolucci director of research at CERN, N. Lockyer director of Fermi National Accelerator Laboratory, N. Roe director of Physics Division of LBL, J. Cao deputy director of Institute of High Energy Physics, IHEP of Beijing, N. Mondal Project Director of the India-Based Neutrino Observatory INO, P. Chomaz director of the Institut de Recherche sur les lois Fondamentales de l'Univers, IRFU/DSM/CEA, T. Kobayashi Deputy Director of the Institute of Particle and Nuclear Studies (IPNS) High Energy Accelerator Research Organization (KEK) in Japan, N. Smith director of the Sudbury Neutrino Observatory, SNOLAB, Dr. Kim SB director of RENO laboratory, Korea. The ICFA neutrino panel and APPIC were represented by K. Long and M. Spiro, respectively.

3 https://indico.cern.ch/event/356320/overview

4 HEPAP/P5: The Particle Physics Project Prioritization Panel report was delivered and approved by the High Energy Physics Advisory Panel in May 2014 http://science.energy.gov/~/media/hep/hepap/pdf/May%202014/FINAL_DRAFT2_P5Report_WEB_052114.pdf

5 APPEC (Astroparticle Physics European Consortium) : http://www.appec.org

6 LBNF/DUNE : Long-Baseline Neutrino Facility/ Deep Underground Neutrino Experiment https://web.fnal.gov/project/LBNF/SitePages/Home.aspx

7 Sanford Underground Research Facility : sanfordlab.org/

8 MicroBoone : http://www-microboone.fnal.gov/

9 ICARUS : Imaging Cosmic And Rare Underground Signals http://icarus.lngs.infn.it/

10 Hyper-Kamiokande : http://www.hyperk.org/

11 PINGU : Precision IceCube Next Generation Upgrade http://arxiv.org/abs/1401.2046

12 ORCA : Oscillations Research with Cosmics in the Abyss http://arxiv.org/abs/1402.1022

13 INO : India-based Neutrino Observatory http://www.ino.tifr.res.in/ino/

14 JUNO : Jiangmen Underground Neutrino Observatory http://english.ihep.cas.cn/rs/fs/juno0815/

15 RENO-50 : Reactor Experiment for Neutrino Oscillation http://arxiv.org/abs/1412.2199http://hcpl.knu.ac.kr/neutrino/neutrino.html

16 ICFA : International Committee for Future Accelerators neutrino panel http://www.fnal.gov/directorate/icfa/neutrino_panel.html

17 APPIC : Astroparticle Physics International Committee

 

 

NASA's Chandra Suggests Black Holes Gorging at Excessive Rates

 
‎10 ‎May ‎2015, ‏‎09:17:23 AMGo to full article
Boston MA (SPX) May 05, 2015 - A group of unusual giant black holes may be consuming excessive amounts of matter, according to a new study using NASA's Chandra X-ray Observatory. This finding may help astronomers understand how the largest black holes were able to grow so rapidly in the early Universe.

Astronomers have known for some time that supermassive black holes - with masses ranging from millions to billions of times the mass of the Sun and residing at the centers of galaxies - can gobble up huge quantities of gas and dust that have fallen into their gravitational pull. As the matter falls towards these black holes, it glows with such brilliance that they can be seen billions of light years away. Astronomers call these extremely ravenous black holes "quasars."

This new result suggests that some quasars are even more adept at devouring material than scientists previously knew.

"Even for famously prodigious consumers of material, these huge black holes appear to be dining at enormous rates, at least five to ten times faster than typical quasars," said Bin Luo of Penn State University in State College, Pennsylvania, who led the study.

Luo and his colleagues examined data from Chandra for 51 quasars that are located at a distance between about 5 billion and 11.5 billion light years from Earth. These quasars were selected because they had unusually weak emission from certain atoms, especially carbon, at ultraviolet wavelengths. About 65% of the quasars in this new study were found to be much fainter in X-rays, by about 40 times on average, than typical quasars.

The weak ultraviolet atomic emission and X-ray fluxes from these objects could be an important clue to the question of how a supermassive black hole pulls in matter. Computer simulations show that, at low inflow rates, matter swirls toward the black hole in a thin disk. However, if the rate of inflow is high, the disk can puff up dramatically, because of pressure from the high radiation, into a torus or donut that surrounds the inner part of the disk.

"This picture fits with our data," said co-author Jianfeng Wu of the Harvard-Smithsonian Center for Astrophysics, in Cambridge, Massachusetts. "If a quasar is embedded in a thick donut-shaped structure of gas and dust, the donut will absorb much of the radiation produced closer to the black hole and prevent it from striking gas located further out, resulting in weaker ultraviolet atomic emission and X-ray emission."

The usual balance between the inward pull of gravity and the outward pressure of radiation would also be affected.

"More radiation would be emitted in a direction perpendicular to the thick disk, rather than along the disk, allowing material to fall in at higher rates," said co-author Niel Brandt, also of Penn State University.

The important implication is that these "thick-disk" quasars may harbor black holes growing at an extraordinarily rapid rate. The current study and previous ones by different teams suggest that such quasars might have been more common in the early Universe, only about a billion years after the Big Bang. Such rapid growth might also explain the existence of huge black holes at even earlier times.

 

 

Ultra-sensitive sensor detects individual electrons

 
‎10 ‎May ‎2015, ‏‎09:17:23 AMGo to full article
Madrid, Spain (SPX) Apr 28, 2015 - A Spanish-led team of European researchers at the University of Cambridge has created an electronic device so accurate that it can detect the charge of a single electron in less than one microsecond. It has been dubbed the 'gate sensor' and could be applied in quantum computers of the future to read information stored in the charge or spin of a single electron.

In the same Cambridge laboratory in the United Kingdom where the British physicist J.J. Thomson discovered the electron in 1897, European scientists have just developed a new ultra-sensitive electrical-charge sensor capable of detecting the movement of individual electrons.

"The device is much more compact and accurate than previous versions and can detect the electrical charge of a single electron in less than one microsecond," M. Fernando Gonzalez Zalba, leader of this research from the Hitachi Cambridge Laboratory and the Cavendish Laboratory, tells SINC.

Details of the breakthrough have been published in the journal Nature Communications and its authors predict that these types of sensors, dubbed 'gate sensors', will be used in quantum computers of the future to read information stored in the charge or spin of a single electron.

"We have called it a gate sensor because, as well as detecting the movement of individual electrons, the device is able to control its flow as if it were an electronic gate which opens and closes," explains Gonzalez Zalba.

The researchers have demonstrated the possibility of detecting the charge of an electron with their device in approximately one nanosecond, the best value obtained to date for this type of system. This has been achieved by coupling a gate sensor to a silicon nanotransistor where the electrons flow individually.

In general, the electrical current which powers our telephones, fridges and other electrical equipment is made up of electrons: minuscule particles carrying an electrical charge travelling in their trillions and whose collective movement makes these appliances work.

However, this is not the case of the latest cutting-edge devices such as ultra-precise biosensors, single electron transistors, molecular circuits and quantum computers. These represent a new technological sector which bases its electronic functionality on the charge of a single electron, a field in which the new gate sensor can offer its advantages.

M. F. Gonzalez-Zalba, S. Barraud, A. J. Ferguson, A. C. Betz. "Probing the limits of gate-based charge sensing". Nature Communications, 6: 6084, 2015. Doi:10.1038/ncomms7084

 

 

First proton collisions at world's largest science experiment should start in early June

 
‎10 ‎May ‎2015, ‏‎09:17:23 AMGo to full article
Dallas TX (SPX) May 01, 2015 - First collisions of protons at the world's largest science experiment are expected to start the first or second week of June, according to a senior research scientist with CERN's Large Hadron Collider in Geneva.

"It will be about another six weeks to commission the machine, and many things can still happen on the way," said physicist Albert De Roeck, a staff member at CERN and a professor at the University of Antwerp, Belgium and UC Davis, California. De Roeck is a leading scientist on CMS, one of the Large Hadron Collider's key experiments.

The LHC in early April was restarted for its second three-year run after a two-year pause to upgrade the machine to operate at higher energies. At higher energy, physicists worldwide expect to see new discoveries about the laws that govern our natural universe.

De Roeck made the comments Monday while speaking during an international meeting of more than 250 physicists from 30 countries on the campus of Southern Methodist University, Dallas.

"There are no significant signs of new physics yet," De Roeck said of the data from the first run, adding however that especially SUSY diehards - physicists who predict the existence of a unique new theory of space and time called SuperSymmetry - maintain hopes of seeing evidence soon of that theory.

De Roeck in fact has high expectations for the possibility of new discoveries that could change the current accepted theory of physical reality, the Standard Model.

"It will take only one significant deviation in the data to change everything," De Roeck said. "The upgraded machine works. Now we have to get to the real operation for physics."

"Unidentified Lying Object" not a problem - remains stable
But work remains to be done. One issue the accelerator physicists remain cautiously aware of, he said, is an "Unidentified Lying Object" in the beam pipe of the LHC's 17-mile underground tunnel, a vacuum tube where proton beams collide and scatter particles that scientists then analyze for keys to unlock the mysteries of the Big Bang and the cosmos.

Because the proton beam is sensitive to the geometry of the environment and can be easily blocked, the beam pipe must be free of even the tiniest amount of debris. Even something as large as a nitrogen particle could disrupt the beam. Because the beam pipe is a sealed vacuum it's impossible to know what the "object" is.

"The unidentified lying object turns out not to be a problem for the operation, it's just something to keep an eye on," De Roeck said. "It's in the vacuum tube and it's not a problem if it doesn't move and remains stable."

The world's largest particle accelerator, the Large Hadron Collider made First proton collisions at world's largest science experiment should start in early Junes when its global collaboration of thousands of scientists in 2012 observed a new fundamental particle, the Higgs boson. After that, the collider was paused for the extensive upgrade. Much more powerful than before, as part of Run 2 physicists on the Large Hadron Collider's experiments are analyzing new proton collision data to unravel the structure of the Higgs.

The Large Hadron Collider straddles the border between France and Switzerland. Its first run began in 2009, led by CERN, the European Organization for Nuclear Research, in Geneva, through an international consortium of thousands of scientists.

Particle discoveries unlock mysteries of cosmos, pave way for new technology
The workshop in Dallas, the "2015 International Workshop on Deep-Inelastic Scattering," draws the world's leading scientists each year to an international city for nuts and bolts talks that drive the world's leading-edge physics experiments, such as the Large Hadron Collider.

Going into the second run, De Roeck said physicists will continue to look for anomalies, unexpected decay modes or couplings, multi-Higgs production, or larger decay rates than expected, among other things.

Particle discoveries by physicists resolve mysteries, such as questions surrounding Dark Matter and Dark Energy, and the earliest moments of the Big Bang. But particle discoveries also are ultimately applied to other fields to improve everyday life, such as medical technologies like MRIs and PET scans, which diagnose and treat cancer.

For example, proton therapy is the newest non-invasive, precision scalpel in the fight against cancer, with new centers opening all over the world.

 

 
 

ORNL reports method that takes quantum sensing to new level

 
‎28 ‎April ‎2015, ‏‎05:58:11 PMGo to full article
Oak Ridge TN (SPX) Apr 27, 2015 - Thermal imaging, microscopy and ultra-trace sensing could take a quantum leap with a technique developed by researchers at the Department of Energy's Oak Ridge National Laboratory.

"Quite simply, under certain circumstances, our method enables us to see things we couldn't see before," said Raphael Pooser, co-author of a paper published in the journal Optica. He and Benjamin Lawrie used quantum correlated beams of light to overcome the fundamental detection limit of microcantilever-based sensors caused by intensity fluctuations.

"By pushing the noise limit lower than ever before, we enable these sensors to see things they couldn't see," Pooser said. "Imagine an image taken with so low contrast that all you see is a big gray square. Now imagine a technique that enhances the contrast to allow discernible features to emerge from that background."

Their work overcomes fundamental limitations of detection derived from the Heisenberg uncertainty principle, which states that the position and momentum of a particle cannot be measured with absolute precision. The more accurately one of the values is known, the less accurately the other value can be known.

Turning to this discovery, Pooser said, "A similar Heisenberg uncertainty relation exists for the intensity and phase of light. We can surpass the quantum limit without violating the uncertainty principle by moving the noise out of the variable of interest and into an area that we don't care about and don't detect."

Ultimately, the new technique, which uses two beams of light to cancel noise, results in a 60 percent error reduction. The result enables higher contrast imaging and detection of lower concentrations of particles than are possible with conventional sensors.

"This marks the first time quantum states have been applied to practical micro-electro-mechanical-systems, or MEMS, devices that are ubiquitous," said Lawrie, citing as examples sensors to measure temperature, pressure, inertial forces, chemicals, magnetic fields and radiation.

"The cantilever - which resembles a tiny diving board - we used was an off-the-shelf component and the method we used to improve its sensitivity is highly compatible with existing sensing and imaging platforms."

Among other possibilities, this work lays the foundation for integrating the sensor into an existing device such as an atomic force microscope, demonstrating that the proof of principle can be used to improve an existing sensor. Atomic force microscopes offer resolution down to fractions of a nanometer and are useful for imaging, measuring and manipulating matter at the nanoscale.

The paper, titled "Ultrasensitive measurement of micro cantilever displacement below the shot noise limit," is available here

 

 

Virtual Telescope Expands to See Black Holes

 
‎28 ‎April ‎2015, ‏‎05:58:11 PMGo to full article
Tucson AZ (SPX) Apr 27, 2015 - A team led by the UA has added Antarctica's largest astronomical telescope to the Event Horizon Telescope - a virtual telescope as big as planet Earth - bringing the international EHT collaboration closer to taking detailed images of the very edge, or "event horizon," of the supermassive black hole at the center of the Milky Way galaxy.

Astronomers building an Earth-size virtual telescope capable of photographing the event horizon of the black hole at the center of our Milky Way have extended their instrument to the bottom of the Earth - the South Pole - thanks to recent efforts by a team led by Dan Marrone of the University of Arizona.

Marrone, an assistant professor in the UA's Department of Astronomy and Steward Observatory, and several colleagues flew to the National Science Foundation's Amundsen-Scott South Pole Station in December to bring the South Pole Telescope, or SPT, into the largest virtual telescope ever built - the Event Horizon Telescope, or EHT. By combining telescopes across the Earth, the EHT will take the first detailed pictures of black holes.

The EHT is an array of radio telescopes connected using a technique known as Very Long Baseline Interferometry, or VLBI. Larger telescopes can make sharper observations, and interferometry allows multiple telescopes to act like a single telescope as large as the separation - or "baseline" - between them.

"Now that we've done VLBI with the SPT, the Event Horizon Telescope really does span the whole Earth, from the Submillimeter Telescope on Mount Graham in Arizona, to California, Hawaii, Chile, Mexico, Spain and the South Pole," Marrone said.

"The baselines to SPT give us two to three times more resolution than our past arrays, which is absolutely crucial to the goals of the EHT. To verify the existence of an event horizon, the 'edge' of a black hole, and more generally to test Einstein's theory of general relativity, we need a very detailed picture of a black hole. With the full EHT, we should be able to do this."

The prime EHT target is the Milky Way's black hole, known as Sagittarius A* (pronounced "A-star"). Even though it is 4 million times more massive than the sun, it is tiny to the eyes of astronomers. Because it is smaller than Mercury's orbit around the sun, yet almost 26,000 light-years away, studying its event horizon in detail is equivalent to standing in California and reading the date on a penny in New York.

With its unprecedented resolution, more than 1,000 times better than the Hubble Space Telescope, the EHT will see swirling gas on its final plunge over the event horizon, never to regain contact with the rest of the universe. If the theory of general relativity is correct, the black hole itself will be invisible because not even light can escape its immense gravity.

First postulated by Albert Einstein's general theory of relativity, the existence of black holes has since been supported by decades' worth of astronomical observations. Most if not all galaxies are now believed to harbor a supermassive black hole at their center, and smaller ones formed from dying stars should be scattered among their stars.

The Milky Way is known to be home to about 25 smallish black holes ranging from five to 10 times the sun's mass. But never has it been possible to directly observe and image one of these cosmic oddities.

Weighing 280 tons and standing 75 feet tall, the SPT sits at an elevation of 9,300 feet on the polar plateau at Amundsen-Scott, which is located at the geographic South Pole. The University of Chicago built SPT with funding and logistical support from the NSF's Division of Polar Programs. The division manages the U.S. Antarctic Program, which coordinates all U.S. research on the southernmost continent.

The 10-meter SPT operates at millimeter wavelengths to make high-resolution images of cosmic microwave background radiation, the light left over from the Big Bang. Because of its location at the Earth's axis and at high elevation where the polar air is largely free of water vapor, it can conduct long-term observations to explore some of the biggest questions in cosmology, such as the nature of dark energy and the process of inflation that is believed to have stretched the universe exponentially in a tiny fraction of the first second after the Big Bang.

"We are thrilled that the SPT is part of the EHT," said John Carlstrom, who leads the SPT collaboration. "The science, which addresses fundamental questions of space and time, is as exciting to us as peering back to the beginning of the universe."

To incorporate the SPT into the EHT, Marrone's team constructed a special, single-pixel camera that can sense the microwaves hitting the telescope. The Academia Sinica Institute for Astronomy and Astrophysics in Taiwan provided the atomic clock needed to precisely track the arrival time of the light.

Comparing recordings made at telescopes all over the world allows the astronomers to synthesize the immense telescope. The Smithsonian Astrophysical Observatory and Haystack Observatory of the Massachusetts Institute of Technology provided equipment to record the microwaves at incredibly high speeds, generating nearly 200 terabytes per day.

"To extend the EHT to the South Pole required improving our data capture systems to record data much more quickly than ever before," said Laura Vertatschitsch of the Smithsonian Astrophysical Observatory. A new "digital back end," developed by Vertatschitsch and colleagues, can process data four times faster than its predecessor, which doubles the sensitivity of each telescope.

For their preliminary observations, Marrone's team trained its instrument on two known black holes, Sagittarius A* in our galaxy, and another, located 10 million light-years away in a galaxy named Centaurus A. For this experiment, the SPT and the Atacama Pathfinder Experiment, or APEX, telescope in Chile observed together, despite being nearly 5,000 miles apart.

These data constitute the highest- resolution observations ever made of Centaurus A (though the information from a single pair of telescopes cannot easily be converted to a picture).

"VLBI is very technically challenging, and a whole system of components had to work perfectly at both SPT and APEX for us to detect our targets," said Junhan Kim, a doctoral student at the UA who helped build and install the SPT EHT receiver. "Now that we know how to incorporate SPT, I cannot wait to see what we can learn from a telescope 10,000 miles across."

The next step will be to include the SPT in the annual EHT experiments that combine telescopes all over the world. Several new telescopes are prepared to join the EHT in the next year, meaning that the next experiment will be the largest both geographically and with regard to the number of telescopes involved. The expansion of the array is supported by the National Science Foundation Division of Astronomical Sciences through its new Mid-Scale Innovations Program, or MSIP.

Shep Doeleman, who leads the EHT and the MSIP award, noted that "the supermassive black hole at the Milky Way's center is always visible from the South Pole, so adding that station to the EHT is a major leap toward bringing an event horizon into focus."

 

 

Pulsing light may indicate supermassive black hole merger

 
‎28 ‎April ‎2015, ‏‎05:58:11 PMGo to full article
College Park MD (SPX) Apr 24, 2015 - As two galaxies enter the final stages of merging, scientists have theorized that the galaxies' supermassive black holes will form a "binary," or two black holes in such close orbit they are gravitationally bound to one another. In a new study, astronomers at the University of Maryland present direct evidence of a pulsing quasar, which may substantiate the existence of black hole binaries.

"We believe we have observed two supermassive black holes in closer proximity than ever before," said Suvi Gezari, assistant professor of astronomy at the University of Maryland and a co-author of the study. "This pair of black holes may be so close together that they are emitting gravitational waves, which were predicted by Einstein's theory of general relativity."

The study was published online in the Astrophysical Journal Letters. The discovery could shed light on how often black holes get close enough to form a gravitationally bound binary and eventually merge together.

Black holes typically gobble up matter, which accelerates and heats up, emitting electromagnetic energy and creating some of the most luminous beacons in the sky called quasars. When two black holes orbit as a binary, they absorb matter cyclically, leading theorists to predict that the binary's quasar would respond by periodically brightening and dimming.

The researchers conducted a systematic search for so-called variable quasars using the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1) Medium Deep Survey. This Haleakala, Hawaii-based telescope imaged the same patch of sky once every three days and collected hundreds of data points for each object over four years.

In that data, the astronomers found quasar PSO J334.2028+01.4075, which has a very large black hole of almost 10 billion solar masses and emits a periodic optical signal that repeats every 542 days.

The quasar's signal was unusual because the light curves of most quasars are arrhythmic. To verify their finding, the research team performed rigorous calculations and simulations and examined additional data, including photometric data from the Catalina Real-Time Transient Survey and spectroscopic data from the FIRST Bright Quasar Survey.

"The discovery of a compact binary candidate supermassive black hole system like PSO J334.2028+01.4075, which appears to be at such close orbital separation, adds to our limited knowledge of the end stages of the merger between supermassive black holes," said UMD astronomy graduate student Tingting Liu, the paper's first author.

The researchers plan to continue searching for new variable quasars. Beginning in 2023, their search could be aided by the Large Synoptic Survey Telescope, which is expected to survey a much larger area and could potentially pinpoint the locations of thousands of these merging supermassive black holes in the night sky.

"These telescopes allow us to watch a movie of how these systems evolve," said Liu. "What's really cool is that we may be able to watch the orbital separation of these supermassive black holes get smaller and smaller until they merge."

 

 

Researchers create comb that detects terahertz waves with extreme precision

 
‎28 ‎April ‎2015, ‏‎05:58:11 PMGo to full article
Pasadena CA (JPL) Apr 24, 2015 - Light can come in many frequencies, only a small fraction of which can be seen by humans. Between the invisible low-frequency radio waves used by cell phones and the high frequencies associated with infrared light lies a fairly wide swath of the electromagnetic spectrum occupied by what are called terahertz, or sometimes submillimeter, waves.

Exploitation of these waves could lead to many new applications in fields ranging from medical imaging to astronomy, but terahertz waves have proven tricky to produce and study in the laboratory. Now, Caltech chemists have created a device that generates and detects terahertz waves over a wide spectral range with extreme precision, allowing it to be used as an unparalleled tool for measuring terahertz waves.

The new device is an example of what is known as a frequency comb, which uses ultrafast pulsed lasers, or oscillators, to produce thousands of unique frequencies of radiation distributed evenly across a spectrum like the teeth of a comb. Scientists can then use them like rulers, lining up the teeth like tick marks to very precisely measure light frequencies.

The first frequency combs, developed in the 1990s, earned their creators (John Hall of JILA and Theordor Hansch of the Max Planck Institute of Quantum Optics and Ludwig Maximilians University Munich) the 2005 Nobel Prize in physics. These combs, which originated in the visible part of the spectrum, have revolutionized how scientists measure light, leading, for example, to the development of today's most accurate timekeepers, known as optical atomic clocks.

The team at Caltech combined commercially available lasers and optics with custom-built electronics to extend this technology to the terahertz, creating a terahertz frequency comb with an unprecedented combination of spectral coverage and precision. Its thousands of "teeth" are evenly spaced across the majority of the terahertz region of the spectrum (0.15-2.4 THz), giving scientists a way to simultaneously measure absorption in a sample at all of those frequencies.

The work is described in a paper that appears in the online version of the journal Physical Review Letters and will be published in the April 24 issue. The lead author is graduate student and National Science Foundation fellow Ian Finneran, who works in the lab of Geoffrey A. Blake, professor of cosmochemistry and planetary sciences and professor of chemistry at Caltech.

Blake explains the utility of the new device, contrasting it with a common radio tuner. "With radio waves, most tuners let you zero in on and listen to just one station, or frequency, at a time," he says. "Here, in our terahertz approach, we can separate and process more than 10,000 frequencies all at once. In the near future, we hope to bump that number up to more than 100,000."

That is important because the terahertz region of the spectrum is chock-full of information. Everything in the universe that is warmer than about 10 degrees Kelvin (-263 degrees Celsius) gives off terahertz radiation.

Even at these very low temperatures molecules can rotate in space, yielding unique fingerprints in the terahertz. Astronomers using telescopes such as Caltech's Submillimeter Observatory, the Atacama Large Millimeter Array, and the Herschel Space Observatory are searching stellar nurseries and planet-forming disks at terahertz frequencies, looking for such chemical fingerprints to try to determine the kinds of molecules that are present and thus available to planetary systems.

But in just a single chunk of the sky, it would not be unusual to find signatures of 25 or more different molecules.

To be able to definitively identify specific molecules within such a tangle of terahertz signals, scientists first need to determine exact measurements of the chemical fingerprints associated with various molecules. This requires a precise source of terahertz waves, in addition to a sensitive detector, and the terahertz frequency comb is ideal for making such measurements in the lab.

"When we look up into space with terahertz light, we basically see this forest of lines related to the tumbling motions of various molecules," says Finneran. "Unraveling and understanding these lines is difficult, as you must trek across that forest one point and one molecule at a time in the lab. It can take weeks, and you would have to use many different instruments. What we've developed, this terahertz comb, is a way to analyze the entire forest all at once."

After the device generates its tens of thousands of evenly spaced frequencies, the waves travel through a sample--in the paper, the researchers provide the example of water vapor. The instrument then measures what light passes through the sample and what gets absorbed by molecules at each tooth along the comb. If a detected tooth gets shorter, the sample absorbed that particular terahertz wave; if it comes through at the baseline height, the sample did not absorb at that frequency.

"Since we know exactly where each of the tick marks on our ruler is to about nine digits, we can use this as a diagnostic tool to get these frequencies really, really precisely," says Finneran. "When you look up in space, you want to make sure that you have such very exact measurements from the lab."

In addition to the astrochemical application of identifying molecules in space, the terahertz comb will also be useful for studying fundamental interactions between molecules. "The terahertz is unique in that it is really the only direct way to look not only at vibrations within individual large molecules that are important to life, but also at vibrations between different molecules that govern the behavior of liquids such as water," says Blake.

Additional coauthors on the paper, "Decade-Spanning High-Precision Terahertz Frequency Comb," include current Caltech graduate students Jacob Good, P. Brandon Carroll, and Marco Allodi, as well as recent graduate Daniel Holland (PhD '14). The work was supported by funding from the National Science Foundation.

 

 

ICARUS neutrino experiment to move to Fermilab

 
‎28 ‎April ‎2015, ‏‎05:58:11 PMGo to full article
Batavia IL (SPX) Apr 24, 2015 - A group of scientists led by Nobel laureate Carlo Rubbia will transport the world's largest liquid-argon neutrino detector across the Atlantic Ocean to its new home at the U.S. Department of Energy's Fermi National Accelerator Laboratory.

The 760-ton, 65-foot-long detector took data for the ICARUS experiment at the Italian Institute for Nuclear Physics' (INFN) Gran Sasso National Laboratory in Italy from 2010 to 2014, using a beam of neutrinos sent through the Earth from CERN. The detector is now being refurbished at CERN, where it is the first beneficiary of a new test facility for neutrino detectors.

When it arrives at Fermilab, the detector will become part of an on-site suite of three experiments dedicated to studying neutrinos, ghostly particles that are all around us but have given up few of their secrets.

All three detectors will be filled with liquid argon, which enables the use of state-of-the-art time projection technology, drawing charged particles created in neutrino interactions toward planes of fine wires that can capture a 3-D image of the tracks those particles leave. Each detector will contribute different yet complementary results to the hunt for a fourth type of neutrino.

"The liquid-argon time projection chamber is a new and very promising technology that we originally developed in the ICARUS collaboration from an initial table-top experiment all the way to a large neutrino detector," Rubbia said. "It is expected that it will become the leading technology for large liquid-argon detectors, with its ability to record ionizing tracks with millimeter precision."

Fermilab operates two powerful neutrino beams and is in the process of developing a third, making it the perfect place for the ICARUS detector to continue its scientific exploration. Scientists plan to transport the detector to the United States in 2017.

A planned sequence of three liquid-argon detectors will provide new insights into the three known types of neutrinos and seek a yet unseen fourth type, following hints from other experiments over the past two decades.

Many theories in particle physics predict the existence of a so-called "sterile" neutrino, which would behave differently from the three known types and, if it exists, could provide a route to understanding the mysterious dark matter that makes up 25 percent of the universe. Discovering this fourth type of neutrino would revolutionize physics, changing scientists' picture of the universe and how it works.

"The arrival of ICARUS and the construction of this on-site research program is a lofty goal in itself," said Fermilab Director Nigel Lockyer. "But it is also the first step forward in Fermilab's plan to host a truly international neutrino facility, with the help of our partners from around the world. The future of neutrino research in the United States is bright."

Fermilab's proposed suite of experiments includes a new 260-ton Short Baseline Neutrino Detector (SBND), which will sit closest to the source of the particle beam. This detector is under construction by a team of scientists and engineers from universities and national laboratories in the United States and Europe.

The neutrino beam will then encounter the already-completed 170-ton MicroBooNE detector, which will begin operation next year. The final piece is the ICARUS detector, which will be housed in a new building to be constructed on site.

Construction on the ICARUS and SBND buildings is scheduled to begin later this year, and the three experiments should all be operational by 2018. The three collaborations include scientists from 45 institutions in six countries.

The move of the ICARUS detector is a sterling example of cooperation between countries (and between three scientific collaborations) to achieve a global physics goal. The current European strategy for particle physics, adopted by the CERN Council, recommends that Europe play an active part in neutrino experiments in other parts of the world, rather than carry them out at CERN.

The U.S. particle physics community has adopted the P5 (Particle Physics Project Prioritization Panel) plan, which calls for a world-class long-distance neutrino facility to be built at Fermilab and operated by an international collaboration. Fermilab, CERN, INFN and many other international institutions are expected to partner in this endeavour.

Knowledge gained by operating the suite of three liquid-argon experiments will be important in the development of the DUNE experiment at the planned long-distance facility at Fermilab. DUNE will be the largest neutrino oscillation experiment ever built, sending particles 800 miles from Fermilab to a 40,000-ton liquid-argon detector at the Sanford Underground Research Facility in South Dakota. For more information, read this article from symmetry magazine.

"The journey of ICARUS from Italy to CERN to the U.S. is a great example of the global planning in particle physics," said CERN Director General Rolf Heuer. "U.S. participation in the LHC and European participation in Fermilab's neutrino program are integral parts of both European and U.S. strategies. I am pleased that CERN has been able to provide the glue that is allowing DUNE to get off the ground with the transport of ICARUS."

"The ICARUS T600 is the only detector in the world with more than 600 tons of argon to have been successfully operated," said INFN's deputy president Antonio Masiero "ICARUS uses a high-precision, innovative technique to detect neutrinos artificially produced in an accelerator. This technique, developed at INFN and first successfully put into operation in the ICARUS experiment at the INFN's Gran Sasso National Laboratory, will make in the new dedicated facility at Fermilab a fundamental contribution to neutrino research."

 

 

Black hole hunters tackle a cosmic conundrum

 
‎28 ‎April ‎2015, ‏‎05:58:11 PMGo to full article
Hanover NH (SPX) Apr 24, 2015 - Dartmouth astrophysicists and their colleagues have not only proven that a supermassive black hole exists in a place where it isn't supposed to be, but in doing so have opened a new door to what things were like in the early universe.

Henize 2-10 is a small irregular galaxy that is not too far away in astronomical terms -- 30 million light-years. "This is a dwarf starburst galaxy -- a small galaxy with regions of very rapid star formation -- about 10 percent of the size of our own Milky Way," says co-author Ryan Hickox, an assistant professor in Dartmouth's Department of Physics and Astronomy. "If you look at it, it's a blob, but it surprisingly harbors a central black hole."

Hickox says there may be similar small galaxies in the known universe, but this is one of the only ones close enough to allow detailed study. Lead author Thomas Whalen, Hickox and a team of other researchers have now analyzed a series of four X-ray observations of Henize 2-10 using three space telescopes over 13 years, providing conclusive evidence for the existence of a black hole.

Their findings appear as an online preprint to be published in The Astrophysical Journal Letters. A PDF also is available on request.

Suspicions about Henize 2-10 first arose in 2011 when another team, that included some of the co-authors, first looked at galaxy Henize 2-10 and tried to explain its behavior. The observed dual emissions of X-ray and radio waves, often associated with a black hole, gave credence to the presence of one.

The instruments utilized were Japan's Advanced Satellite for Cosmology and Astrophysics (1997), the European Space Agency's XMM-Newton (2004, 2011) and NASA's Chandra X-ray Observatory (2001).

"The galaxy was bright in 2001, but it has gotten less bright over time," says Hickox. "This is not consistent with being powered only by star formation processes, so it almost certainly had to have a small supermassive black hole -- small compared to the largest supermassive black holes in massive elliptical galaxies, but is still a million times the mass of the sun."

A characteristic of supermassive black holes is that they do change with time -- not a huge amount, explains Hickox, "and that is exactly what Tom Whalen found," he says. "This variability definitely tells us that the emission is coming from a compact source at the center of this system, consistent with it being a supermassive black hole."

While supermassive black holes are typically found in the central bulges of galaxies, Henize 2-10 has no bulge. "All the associations that people have made between galaxies and black holes tell us there ought to be no black hole in this system," says Whalen, but the team has proven otherwise. Whalen, a recent Dartmouth graduate, is now a member of the Chandra X-ray Center team at the Harvard-Smithsonian Center for Astrophysics.

A big question is where black holes come from. "When people try to simulate where the galaxies come from, you have to put in these black holes at the beginning, but we don't really know what the conditions were. These dwarf starburst galaxies are the closest analogs we have in the universe around us now, to the first galaxies early in the universe," says Whalen.

The authors conclude: "Our results confirm that nearby star-forming galaxies can indeed form massive black holes and that by implication so can their primordial counterparts."

"Studying those to get some sense of what might have happened very early in the universe is very powerful," says Hickox.

 

 

Quantum model reveals surface structure of water

 
‎28 ‎April ‎2015, ‏‎05:58:11 PMGo to full article
London, UK (SPX) Apr 24, 2015 - The National Physical Laboratory (NPL), the UK's National Measurement Institute in collaboration with IBM and the University of Edinburgh, has used a new quantum model to reveal the molecular structure of water's liquid surface.

The liquid-vapour interface of water is one of the most common of all heterogeneous (or non-uniform) environments. Understanding its molecular structure will provide insight into complex biochemical interactions underpinning many biological processes. But experimental measurements of the molecular structure of water's surface are challenging, and currently competing models predict various different arrangements.

NPL has been working with IBM and the University of Edinburgh to make materials simulation more predictive and intuitive, by developing a new class of materials model based on quantum mechanical effects.

The model is based on a single charged particle, the quantum Drude oscillator (QDO), which mimics the way the electrons of a real water molecule fluctuate and respond to their environment. This simplified representation retains interactions not normally accessible in classical models and accurately captures the properties of liquid water.

In new research, published in a featured article in the journal Physical Chemistry Chemical Physics, the team used the QDO model to determine the molecular structure of water's liquid surface. The results provide new insight into the hydrogen-bonding topology at the interface, which is responsible for the unusually high surface tension of water.

This is the first time the QDO model of water has been applied to the liquid-vapour interface. The results enabled the researchers to identify the intrinsic asymmetry of hydrogen bonds as the mechanism responsible for the surface's molecular orientation. The model was also capable of predicting the temperature dependence of the surface tension with remarkable accuracy - to within 1 % of experimental values.

Coupled with earlier work on bulk water, this result demonstrates the exceptional transferability of the QDO approach and offers a promising new platform for molecular exploration of condensed matter.

 

 

A cold cosmic mystery solved

 
‎28 ‎April ‎2015, ‏‎05:58:11 PMGo to full article
Manoa HI (SPX) Apr 24, 2015 - In 2004, astronomers examining a map of the radiation leftover from the Big Bang (the cosmic microwave background, or CMB) discovered the Cold Spot, a larger-than-expected unusually cold area of the sky. The physics surrounding the Big Bang theory predicts warmer and cooler spots of various sizes in the infant universe, but a spot this large and this cold was unexpected.

Now, a team of astronomers led by Dr. Istvan Szapudi of the Institute for Astronomy at the University of Hawaii at Manoa may have found an explanation for the existence of the Cold Spot, which Szapudi says may be "the largest individual structure ever identified by humanity."

If the Cold Spot originated from the Big Bang itself, it could be a rare sign of exotic physics that the standard cosmology (basically, the Big Bang theory and related physics) does not explain. If, however, it is caused by a foreground structure between us and the CMB, it would be a sign that there is an extremely rare large-scale structure in the mass distribution of the universe.

Using data from Hawaii's Pan-STARRS1 (PS1) telescope located on Haleakala, Maui, and NASA's Wide Field Survey Explorer (WISE) satellite, Szapudi's team discovered a large supervoid, a vast region 1.8 billion light-years across, in which the density of galaxies is much lower than usual in the known universe.

This void was found by combining observations taken by PS1 at optical wavelengths with observations taken by WISE at infrared wavelengths to estimate the distance to and position of each galaxy in that part of the sky.

Earlier studies, also done in Hawaii, observed a much smaller area in the direction of the Cold Spot, but they could establish only that no very distant structure is in that part of the sky.

Paradoxically, identifying nearby large structures is harder than finding distant ones, since we must map larger portions of the sky to see the closer structures. The large three-dimensional sky maps created from PS1 and WISE by Dr. Andras Kovacs (Eotvos Lorand University, Budapest, Hungary) were thus essential for this study. The supervoid is only about 3 billion light-years away from us, a relatively short distance in the cosmic scheme of things.

Imagine there is a huge void with very little matter between you (the observer) and the CMB. Now think of the void as a hill. As the light enters the void, it must climb this hill. If the universe were not undergoing accelerating expansion, then the void would not evolve significantly, and light would descend the hill and regain the energy it lost as it exits the void. But with the accelerating expansion, the hill is measurably stretched as the light is traveling over it.

By the time the light descends the hill, the hill has gotten flatter than when the light entered, so the light cannot pick up all the energy it lost upon entering the void. The light exits the void with less energy, and therefore at a longer wavelength, which corresponds to a colder temperature.

Getting through a supervoid can take millions of years, even at the speed of light, so this measurable effect, known as the Integrated Sachs-Wolfe (ISW) effect, might provide the first explanation one of the most significant anomalies found to date in the CMB, first by a NASA satellite called the Wilkinson Microwave Anisotropy Probe (WMAP), and more recently, by Planck, a satellite launched by the European Space Agency.

While the existence of the supervoid and its expected effect on the CMB do not fully explain the Cold Spot, it is very unlikely that the supervoid and the Cold Spot at the same location are a coincidence. The team will continue its work using improved data from PS1 and from the Dark Energy Survey being conducted with a telescope in Chile to study the Cold Spot and supervoid, as well as another large void located near the constellation Draco.

The study is being published online on April 20 in Monthly Notices of the Royal Astronomical Society by the Oxford University Press. In addition to Szapudi and Kovacs, researchers who contributed to this study include UH Manoa alumnus Benjamin Granett (now at the National Institute for Astrophysics, Italy), Zsolt Frei (Eotvos Lorand), and Joseph Silk (Johns Hopkins).

 

 

Is the universe a hologram

 
‎28 ‎April ‎2015, ‏‎05:58:10 PMGo to full article
Vienna, Austria (SPX) Apr 28, 2015 - At first glance, there is not the slightest doubt: to us, the universe looks three dimensional. But one of the most fruitful theories of theoretical physics in the last two decades is challenging this assumption. The "holographic principle" asserts that a mathematical description of the universe actually requires one fewer dimension than it seems. What we perceive as three dimensional may just be the image of two dimensional processes on a huge cosmic horizon.

Up until now, this principle has only been studied in exotic spaces with negative curvature. This is interesting from a theoretical point of view, but such spaces are quite different from the space in our own universe. Results obtained by scientists at TU Wien (Vienna) now suggest that the holographic principle even holds in a flat spacetime.

The Holographic Principle
Everybody knows holograms from credit cards or banknotes. They are two dimensional, but to us they appear three dimensional. Our universe could behave quite similarly: "In 1997, the physicist Juan Maldacena proposed the idea that there is a correspondence between gravitational theories in curved anti-de-sitter spaces on the one hand and quantum field theories in spaces with one fewer dimension on the other", says Daniel Grumiller (TU Wien).

Gravitational phenomena are described in a theory with three spatial dimensions, the behaviour of quantum particles is calculated in a theory with just two spatial dimensions - and the results of both calculations can be mapped onto each other.

Such a correspondence is quite surprising. It is like finding out that equations from an astronomy textbook can also be used to repair a CD-player. But this method has proven to be very successful. More than ten thousand scientific papers about Maldacena's "AdS-CFT-correspondence" have been published to date.

Correspondence Even in Flat Spaces
For theoretical physics, this is extremely important, but it does not seem to have much to do with our own universe. Apparently, we do not live in such an anti-de-sitter-space. These spaces have quite peculiar properties. They are negatively curved, any object thrown away on a straight line will eventually return. "Our universe, in contrast, is quite flat - and on astronomic distances, it has positive curvature", says Daniel Grumiller.

However, Grumiller has suspected for quite some time that a correspondence principle could also hold true for our real universe. To test this hypothesis, gravitational theories have to be constructed, which do not require exotic anti-de-sitter spaces, but live in a flat space. For three years, he and his team at TU Wien (Vienna) have been working on that, in cooperation with the University of Edinburgh, Harvard, IISER Pune, the MIT and the University of Kyoto.

Now Grumiller and colleagues from India and Japan have published an article in the journal "Physical Review Letters", confirming the validity of the correspondence principle in a flat universe.

Calculated Twice, Same Result
"If quantum gravity in a flat space allows for a holographic description by a standard quantum theory, then there must by physical quantities, which can be calculated in both theories - and the results must agree", says Grumiller. Especially one key feature of quantum mechanics -quantum entanglement - has to appear in the gravitational theory.

When quantum particles are entangled, they cannot be described individually. They form a single quantum object, even if they are located far apart. There is a measure for the amount of entanglement in a quantum system, called "entropy of entanglement". Together with Arjun Bagchi, Rudranil Basu and Max Riegler, Daniel Grumiller managed to show that this entropy of entanglement takes the same value in flat quantum gravity and in a low dimension quantum field theory.

"This calculation affirms our assumption that the holographic principle can also be realized in flat spaces. It is evidence for the validity of this correspondence in our universe", says Max Riegler (TU Wien).

"The fact that we can even talk about quantum information and entropy of entanglement in a theory of gravity is astounding in itself, and would hardly have been imaginable only a few years back. That we are now able to use this as a tool to test the validity of the holographic principle, and that this test works out, is quite remarkable", says Daniel Grumiller.

This however, does not yet prove that we are indeed living in a hologram - but apparently there is growing evidence for the validity of the correspondence principle in our own universe.

 

 

Deep Space Atomic Clock On Time For 2016 Mission

 
‎28 ‎April ‎2015, ‏‎05:58:10 PMGo to full article
Pasadena CA (JPL) Apr 28, 2015 - As the saying goes, timing is everything. More so in 21st-century space exploration where navigating spacecraft precisely to far-flung destinations - say, to Mars or even more distant Europa, a moon of Jupiter - is critical. NASA is making great strides to develop the Deep Space Atomic Clock, or DSAC for short.

The clock is being readied to fly and validate a miniaturized, ultra-precise mercury-ion atomic clock that is orders of magnitude more stable than today's best navigational clocks. Slated for a boost into space in 2016, DSAC will perform a yearlong demonstration aimed at advancing the technology to a new level of maturity for potential adoption by a host of other missions.

Stability in space
The upcoming DSAC mission will deliver the next generation of deep-space radio science. At first blush, that may seem humdrum. But here's the wake-up call stemming from such work on a timepiece for tomorrow...

For one, the Deep Space Atomic Clock will be far more stable than any other atomic clock flown in space, as well as smaller and lighter. Stability is the extent to which each tick of the clock matches the duration of every other tick.

At its core, DSAC is a paradigm-shifting technology demonstration mission to exhibit how to navigate spacecraft better, collect more data with better precision and boost the ability for a spacecraft to brake itself more accurately into an orbit or land upon other worlds.

The DSAC project is sponsored by NASA's Space Technology Mission Directorate and managed by NASA's Jet Propulsion Laboratory in Pasadena, California.

Flight-ready demonstration unit
At JPL, the DSAC flight-ready demonstration unit is assembled. Further environmental testing, performance optimization and other activities are being completed.

In the laboratory setting, DSAC has been refined to permit drift of no more than 1 nanosecond throughout 10 days. Drift is when a clock does not run at the exact speed compared to another clock.

"Transitioning the technology from the lab, where environments are very stable, to the launch and space environments - where they are much more variable - has presented some unique challenges to DSAC's design," says Todd Ely of JPL, principal technologist for the DSAC Technology Demonstration Mission.

For example, Ely points to temperatures in orbit that vary daily and seasonally. They can affect clock function if not carefully considered. Then there are gravitational loads placed on the instrument during launch that can reach up to 14 times the gravity of Earth. Those stresses can strain the clock's structure and must also be accounted for in DSAC's design.

"These are just a couple of factors that have led to DSAC's robustness," Ely says.

In-orbit test
The DSAC demonstration unit and payload are to be hosted on a spacecraft provided by Surrey Satellite Technologies U.S. of Englewood, Colorado, and lofted spaceward as part of the U.S. Air Force's Space Test Program (STP)-2 mission aboard a Space X Falcon 9 Heavy booster.

The DSAC payload will be operated for at least a year to demonstrate its functionality and utility for one-way-based navigation. The clock will make use of GPS satellite signals to demonstrate precision orbit determination and confirm its performance.

Once DSAC is in orbit, what are the steps to successful testing?

"Our in-orbit investigation has several phases beginning with commissioning, where we start up the clock and bring it to its normal operating state," Ely responds.

"After that we'll spend the first few months confirming and updating our modeling assumptions, which we will use to validate the clock's space-based performance," Ely adds. "With these updates and our observation data, we'll spend the next few months determining DSAC's performance over many time scales...from seconds to days."

Infusion for the future
Ely says that from that point, the DSAC team transitions to a less intense mode, one in which they will monitor clock telemetry. By using that data, ground controllers can characterize the atomic clock's potential for long life operations.

"This will be important data for the next generation DSAC, where its lifetime for deep space would most likely need to be many years," Ely says. The DSAC flight in 2016 will identify pathways to spin the design of a future operational unit to be smaller and more power efficient, he adds.

Indeed, DSAC is an ideal technology for infusion into deep space exploration.

One future use of DSAC follow-on applications includes Mars-bound spacecraft that need to aerobrake accurately into the Red Planet's atmosphere.

Transformational technology
Yet another DSAC-inspired duty is to help confirm the existence and characteristics of a possible subsurface liquid ocean on Europa. Any liquid/ice ocean on the enigmatic moon would be affected by nearby giant Jupiter. DSAC technology could make possible global estimations of the subsurface ocean.

Estimation of Europa's gravitational tide, Ely says, provides an example of the use of DSAC-enabled tracking data for Europa gravity science.

DSAC-enabled high-quality one-way signals for deep space navigation and radio science can enhance radio science at Europa, Mars and other celestial bodies, Ely concludes. DSAC has the potential to transform the traditional two-way paradigm of deep space radiometric tracking, he says, to a more flexible, efficient and extensible one-way tracking architecture.

 

 

Successful Demonstration of Ultra-Cold Neutrino Experiment

 
‎16 ‎April ‎2015, ‏‎09:05:00 AMGo to full article
Berkeley CA (SPX) Apr 12, 2015 - An international team of nuclear physicists announced the first scientific results from the Cryogenic Underground Observatory for Rare Events (CUORE) experiment. CUORE, located at the INFN Gran Sasso National Laboratories in Italy, is designed to confirm the existence of the Majorana neutrino, which scientists believe could hold the key to why there is an abundance of matter over antimatter. Or put another way: why we exist in this universe.

The results of the experiment, called CUORE-0, were announced at INFN Gran Sasso Laboratories (LNGS) in Italy, the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), and at other institutions in the U.S.

The findings are twofold. First, the CUORE-0 results place some of the most sensitive constraints on the mass of the elusive Majorana neutrino to date. With these new constraints, the CUORE team is essentially shrinking the size of the haystack that hides the Majorana needle, making it much more likely to be found.

Second, the experiment, successfully demonstrates the performance of CUORE's novel design - a detector made of towers of Rubik's-cube-size crystals of tellurium dioxide. These towers are placed in a high-tech refrigerator that has been painstakingly decontaminated, shielded from cosmic rays, and cooled to near absolute zero.

These results represent data collected over two years from just one tower of tellurium dioxide crystals. By the end of the year, all 19 towers, each containing 52 crystals, will be online, increasing CUORE's sensitivity by a factor of 20.

"CUORE-0 is so far the largest detector operating at a temperature very close to absolute zero," says Dr. Oliviero Cremonesi of INFN-Milano Bicocca, spokesperson for the CUORE collaboration. "CUORE is presently in its final stages of construction, and when completed, it will study the nuclear processes associated with the Majorana neutrino with unprecedented sensitivity."

"With the CUORE-0 results, we've proven that our experimental design, materials, and processes, which include extremely clean surfaces, pure materials, and precision assembly, are paying off," says Yury Kolomensky, senior faculty scientist in the Physics Division at Berkeley Lab, professor of physics at UC Berkeley, and U.S. spokesperson for the CUORE collaboration.

Annihilations in the Early Universe
To pin down the Majorana neutrino, the researchers are looking for a telltale indicator, a rare nuclear process called neutrinoless double-beta decay. This process is expected to occur infrequently, if at all: less than once every septillion (a trillion trillion, or, a 1 followed by 24 zeros) years per nucleus.

Unlike regular double-beta decay, which emits two anti-neutrinos, neutrinoless double-beta decay emits no neutrinos at all. It's as if one of the anti-neutrinos has transformed into a neutrino and cancelled - or annihilated - its sibling inside the nucleus.

"In 1937, Ettore Majorana predicted that neutrinos and anti-neutrinos could be two manifestations of the same particle - in modern language, they are called Majorana particles," says Reina Maruyama, assistant professor of physics at Yale University, and a member of the CUORE Physics Board, which guided the analysis of the data. "Detecting neutrinoless double-beta decay would lead us directly to the Majorana particle, and give us hints as to why the universe has so much more matter than antimatter."

Known laws of physics forbid such matter-antimatter transformations for normal electrically charged particles like electrons and protons. But neutrinos, which are electrically neutral, may be a special kind of matter with special capabilities.

The proposed matter-antimatter transitions, while extraordinarily rare now, if they happen at all, may have been common in the universe just after the big bang. The remainder of existence, then, after all the annihilations, would be the matter-full universe we see today.

Crystal Clarity
The CUORE crystals of tellurium dioxide are packed with more than 50 septillion nuclei of tellurium-130, a naturally occurring isotope that can produce double-beta decay and possibly neutrinoless double-beta decay. For the experiment, the crystal towers sit in an extremely cold refrigerator called a cryostat that's cooled to about 10 millikelvin, or -273.14 degrees Celsius. Last year, the CUORE cryostat set a record for being the coldest volume of its size.

In the very cold CUORE crystals, presence of both nuclear processes would produce small but precisely measured temperature rises, observable by highly sensitive temperature detectors within the cryostat. These temperature increases correspond to spectra - essentially the amount of energy given off - from the nuclear event. Two-neutrino double-beta decay produces a broad spectrum. In contrast, neutrinoless double-beta decay would create a characteristic peak at the energy of 2,528 kiloelectron-volts. This peak is what the researchers are looking for.

The CUORE experiment sits about a kilometer beneath the tallest mountain of the Apennine range in Italy, where rock shields it from cosmic rays. This location, as well as the experimental design, enables the sensitivity required to detect neutrinoless double-beta decay.

"The sensitivity demonstrated by the results today is outstanding," says Stefano Ragazzi, director of the INFN Gran Sasso National Laboratories. "The INFN Gran Sasso Laboratories offers a worldwide unique environment to search for ultra-rare interactions of Majorana neutrinos and dark matter particles and is proud to host the most sensitive experiments in these fields of research."

"While there's no direct evidence of the Majorana neutrino yet, our team is optimistic that CUORE is well positioned to find it," says Ettore Fiorini, professor emeritus of physics at the University of Milano-Bicocca and founding spokesperson emeritus of the experiment. "There is a competition of sorts, with other experiments using complementary techniques to CUORE turning on at about the same time. The next few years will be tremendously exciting."

 

 

Accelerating universe? Not so fast

 
‎16 ‎April ‎2015, ‏‎09:05:00 AMGo to full article
Tucson AZ (SPX) Apr 14, 2015 - Certain types of supernovae, or exploding stars, are more diverse than previously thought, a University of Arizona-led team of astronomers has discovered. The results, reported in two papers published in the Astrophysical Journal, have implications for big cosmological questions, such as how fast the universe has been expanding since the Big Bang.

Most importantly, the findings hint at the possibility that the acceleration of the expansion of the universe might not be quite as fast as textbooks say.

The team, led by UA astronomer Peter A. Milne, discovered that type Ia supernovae, which have been considered so uniform that cosmologists have used them as cosmic "beacons" to plumb the depths of the universe, actually fall into different populations. The findings are analogous to sampling a selection of 100-watt light bulbs at the hardware store and discovering that they vary in brightness.

"We found that the differences are not random, but lead to separating Ia supernovae into two groups, where the group that is in the minority near us are in the majority at large distances -- and thus when the universe was younger," said Milne, an associate astronomer with the UA's Department of Astronomy and Steward Observatory. "There are different populations out there, and they have not been recognized. The big assumption has been that as you go from near to far, type Ia supernovae are the same. That doesn't appear to be the case."

The discovery casts new light on the currently accepted view of the universe expanding at a faster and faster rate, pulled apart by a poorly understood force called dark energy. This view is based on observations that resulted in the 2011 Nobel Prize for Physics awarded to three scientists, including UA alumnus Brian P. Schmidt.

The Nobel laureates discovered independently that many supernovae appeared fainter than predicted because they had moved farther away from Earth than they should have done if the universe expanded at the same rate. This indicated that the rate at which stars and galaxies move away from each other is increasing; in other words, something has been pushing the universe apart faster and faster.

"The idea behind this reasoning," Milne explained, "is that type Ia supernovae happen to be the same brightness -- they all end up pretty similar when they explode. Once people knew why, they started using them as mileposts for the far side of the universe.

"The faraway supernovae should be like the ones nearby because they look like them, but because they're fainter than expected, it led people to conclude they're farther away than expected, and this in turn has led to the conclusion that the universe is expanding faster than it did in the past."

Milne and his co-authors -- Ryan J. Foley of the University of Illinois at Urbana-Champaign, Peter J. Brown at Texas A and M University and Gautham Narayan of the National Optical Astronomy Observatory, or NOAO, in Tucson -- observed a large sample of type Ia supernovae in ultraviolet and visible light. For their study, they combined observations made by the Hubble Space Telescope with those made by NASA's Swift satellite.

The data collected with Swift were crucial because the differences between the populations -- slight shifts toward the red or the blue spectrum -- are subtle in visible light, which had been used to detect type Ia supernovae previously, but became obvious only through Swift's dedicated follow-up observations in the ultraviolet.

"These are great results," said Neil Gehrels, principal investigator of the Swift satellite, who co-authored the first paper. "I am delighted that Swift has provided such important observations, which have been made toward a science goal that is completely independent of the primary mission. It demonstrates the flexibility of our satellite to respond to new phenomena swiftly."

"The realization that there were two groups of type Ia supernovae started with Swift data," Milne said. "Then we went through other datasets to see if we see the same. And we found the trend to be present in all the other datasets.

"As you're going back in time, we see a change in the supernovae population," he added. "The explosion has something different about it, something that doesn't jump out at you when you look at it in optical light, but we see it in the ultraviolet.

"Since nobody realized that before, all these supernovae were thrown in the same barrel. But if you were to look at 10 of them nearby, those 10 are going to be redder on average than a sample of 10 faraway supernovae."

The authors conclude that some of the reported acceleration of the universe can be explained by color differences between the two groups of supernovae, leaving less acceleration than initially reported. This would, in turn, require less dark energy than currently assumed.

"We're proposing that our data suggest there might be less dark energy than textbook knowledge, but we can't put a number on it," Milne said. "Until our paper, the two populations of supernovae were treated as the same population. To get that final answer, you need to do all that work again, separately for the red and for the blue population."

The authors pointed out that more data have to be collected before scientists can understand the impact on current measures of dark energy. Scientists and instruments in Arizona will play important roles in these studies, according to Milne.

These include projects led by NOAO; the Large Synoptic Survey Telescope, or LSST, whose primary mirror was produced at the UA; and a camera built by the UA's Imaging Technology Lab for the Super-LOTIS telescope on Kitt Peak southwest of Tucson. Super-LOTIS is a robotic telescope that will use the new camera to follow up on gamma-ray bursts -- the "muzzle flash" of a supernova -- detected by Swift.

The research paper is published online here

 

 

Flip-flopping black holes spin to the end of the dance

 
‎16 ‎April ‎2015, ‏‎09:05:00 AMGo to full article
Rochester NY (SPX) Apr 12, 2015 - When black holes tango, one massive partner spins head over heels (or in this case heels over head) until the merger is complete, said researchers at Rochester Institute of Technology in a paper published in Physical Review Letters.

This spin dynamic may affect the growth of black holes surrounded by accretion disks and alter galactic and supermassive binary black holes, leading to observational effects, according to RIT scientists Carlos Lousto and James Healy.

The authors of the study will present their findings at the American Physical Society meeting in Baltimore on April 14 and celebration of the Centennial of General Relativity.

Lousto and Healy, postdoctoral researcher at RIT, use sophisticated numerical techniques to solve Einstein's equations of gravity and simulate black hole interactions on supercomputers. The specialized field known as numerical relativity grew from the general theory of relativity, first published in November 1915.

"We study binary spinning black holes to display the long-term individual spin dynamics," said Lousto, professor in RIT's School of Mathematical Sciences and a member of the Center for Computational Relativity and Gravitation.

In their paper, "Flip-flopping binary black holes," Lousto and Healy numerically simulated equal-mass black holes and studied the individual alignment and direction of spin as the black holes approached merger. The binary black holes flirted for nearly 48 orbits, three precession cycles, and half of a flip-flop cycle.

"Lousto and Healy's simulation is one of the longest ever attempted for spinning black hole binaries," said Pedro Marronetti, National Science Foundation physics division program director. "Their results and potential observational effects will impact research in a wide range of areas, from gravitational physics to galactic evolution and cosmology."

Key to their findings is that one black hole in the simulation totally changes the orientation of its spin. Its initial alignment with the orbital angular momentum changes to a complete anti-alignment after half of a flip-flop cycle, Lousto said.

The researchers compared this evolution with post-Newtonian equations of motion and spin evolution and deciphered maximum flip-flop angles and frequencies.

"We show that this process continuously flip-flops the spin during the lifetime of the binary until merger," Lousto said.

Lousto and Healy visualized the black holes' flip-flopping tango in a short animation. The mini-movie, produced at the Black Hole Lab in RIT's Center for Computational Relativity and Gravitation, is set to Invierno Porteno by Argentine tango composer Astor Piazzolla.

 

 

Universe may be expanding at slower rate than previously thought

 
‎16 ‎April ‎2015, ‏‎09:05:00 AMGo to full article
Tucson (UPI) Apr 12, 2015 - A new theory claims the universe might not be expanding as quickly as was previously thought.

Scientists at the University of Arizona recently found that the supernovae used to measure distances in the universe, Type Ia supernovae, have irregularities from one to the next.

"We found that the differences are not random, but lead to separating Ia supernovae into two groups, where the group that is in the minority near us are in the majority at large distances -- and thus when the universe was younger," Peter A. Milne, an associate astronomer, said in a statement. "There are different populations out there, and they have not been recognized. The big assumption has been that as you go from near to far, type Ia supernovae are the same. That doesn't appear to be the case."

Since Ia supernovae vary in brightness, because of different levels of dark energy, the idea that the universe is expanding at an accelerating rate may not be true. That theory has been based on the fact supernovae look fainter the farther away they are, which could just have to do with how they naturally differ.

The study is published in The Astophysical Journal.

 

 

Unravelling relativistic effects in the heaviest actinide element

 
‎16 ‎April ‎2015, ‏‎09:05:00 AMGo to full article
Mainz, Germany (SPX) Apr 12, 2015 - An international collaboration led by the research group of superheavy elements at the Japan Atomic Energy Agency (JAEA), Tokai, Japan has achieved the ionization potential measurement of lawrencium (element 103) with a novel-type technique at the JAEA tandem accelerator.

Based on the empirically developed "actinide concept", and in agreement with theoretical calculations, in today's Periodic Table the series of actinide elements terminates with element 103, lawrencium (Lr). Now researchers have measured the first ionization potential of Lr, which reflects the binding energy of the most weakly-bound valence electron in lawrencium's atomic shell.

Effects of relativity strongly affect this energy, and the experimental result is in excellent agreement with a new theoretical calculation, which includes these effects. It was shown that removing the outermost electron requires least energy in Lr among all actinides, as was expected. This validates the position of Lr as the last actinide element and confirms the architecture of the Periodic Table.

Since the introduction of the "actinide concept" as the most dramatic modern revision of the Periodic Table of the Elements by Glenn T. Seaborg in the 1940s, the element with atomic number 103, lawrencium (Lr), played a crucial role as the last element in the actinide series.

This special position turned out to set this element into the focus of questions on the influence of relativistic effects and the determination of properties confirming its position as the last actinide element. Consequently, the quest for data on chemical and physical properties of Lr was driving experimental and theoretical studies.

Two aspects most frequently addressed concerned its ground state electronic configuration and the value of its first ionization potential. As the last element in the actinide series, and similar to lutetium (Lu) as the last element in the lanthanide series, it was expected that Lr has a very low first ionization potential that is strongly influenced by relativistic effects.

However, Lr is only accessible atom-at-a-time in syntheses at heavy-ion accelerators, and only short-lived isotopes are known. Therefore, experimental investigations on Lr are very rare and have so far been limited to a few studies of some basic chemical properties.

In their new work, for which the international research collaboration exploited a novel combination and advancement of methods and techniques, the researchers report on the first and accurate measurement of the first ionization potential of Lr. For the experiment, the Institute of Nuclear Chemistry at Johannes Gutenberg University Mainz purified and prepared the exotic target material californium (element 98).

The material was converted into a target in Japan and then exposed to a beam of boron ions (element 5). The experiment was supplemented by theoretical calculations undertaken by scientists at the Helmholtz Institute Mainz (HIM) and at Tel Aviv University of Israel using the most up-to-date quantum chemical methods to quantify the ionization energy. The very good agreement between calculated and experimental result validates the quantum chemical calculations. The experimental technique opens up new perspectives for similar studies of yet more exotic, superheavy elements.

The international team consists of research groups from JAEA, the Institute of Nuclear Chemistry at Johannes Gutenberg University Mainz (JGU), Germany, the Helmholtz Institute Mainz (HIM), Germany, the GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany, the European Organization for Nuclear Research (CERN), Geneva, Switzerland, Ibaraki University, Japan, Niigata University, Japan, Hiroshima University, Japan, Massey University, Auckland, New Zealand, and Tel Aviv University, Israel.

The new findings have been presented in the NATURE magazine. Tetsuya K. Sato et al. Measurement of the first ionization potential of lawrencium, element 103; NATURE 520, 209-211, 9. April 2015; DOI: 10.1038/nature14342

 

 

Black holes don't erase information, scientists say

 
‎16 ‎April ‎2015, ‏‎09:05:00 AMGo to full article
Buffalo NY (SPX) Apr 09, 2015 - Shred a document, and you can piece it back together. Burn a book, and you could theoretically do the same. But send information into a black hole, and it's lost forever. That's what some physicists have argued for years: That black holes are the ultimate vaults, entities that suck in information and then evaporate without leaving behind any clues as to what they once contained.

But new research shows that this perspective may not be correct. "According to our work, information isn't lost once it enters a black hole," says Dejan Stojkovic, PhD, associate professor of physics at the University at Buffalo. "It doesn't just disappear."

Stojkovic's new study, "Radiation from a Collapsing Object is Manifestly Unitary," appeared on March 17 in Physical Review Letters, with UB PhD student Anshul Saini as co-author.

The paper outlines how interactions between particles emitted by a black hole can reveal information about what lies within, such as characteristics of the object that formed the black hole to begin with, and characteristics of the matter and energy drawn inside.

This is an important discovery, Stojkovic says, because even physicists who believed information was not lost in black holes have struggled to show, mathematically, how this happens. His new paper presents explicit calculations demonstrating how information is preserved, he says.

The research marks a significant step toward solving the "information loss paradox," a problem that has plagued physics for almost 40 years, since Stephen Hawking first proposed that black holes could radiate energy and evaporate over time. This posed a huge problem for the field of physics because it meant that information inside a black hole could be permanently lost when the black hole disappeared - a violation of quantum mechanics, which states that information must be conserved.

Information hidden in particle interactions
In the 1970s, Hawking proposed that black holes were capable of radiating particles, and that the energy lost through this process would cause the black holes to shrink and eventually disappear. Hawking further concluded that the particles emitted by a black hole would provide no clues about what lay inside, meaning that any information held within a black hole would be completely lost once the entity evaporated.

Though Hawking later said he was wrong and that information could escape from black holes, the subject of whether and how it's possible to recover information from a black hole has remained a topic of debate.

Stojkovic and Saini's new paper helps to clarify the story.
Instead of looking only at the particles a black hole emits, the study also takes into account the subtle interactions between the particles. By doing so, the research finds that it is possible for an observer standing outside of a black hole to recover information about what lies within.

Interactions between particles can range from gravitational attraction to the exchange of mediators like photons between particles. Such "correlations" have long been known to exist, but many scientists discounted them as unimportant in the past.

"These correlations were often ignored in related calculations since they were thought to be small and not capable of making a significant difference," Stojkovic says. "Our explicit calculations show that though the correlations start off very small, they grow in time and become large enough to change the outcome."

 

 

Tunneling across a tiny gap

 
‎16 ‎April ‎2015, ‏‎09:05:00 AMGo to full article
Boston MA (SPX) Apr 09, 2015 - Conduction and thermal radiation are two ways in which heat is transferred from one object to another: Conduction is the process by which heat flows between objects in physical contact, such as a pot of tea on a hot stove, while thermal radiation describes heat flow across large distances, such as heat emitted by the sun.

These two fundamental heat-transfer processes explain how energy moves across microscopic and macroscopic distances. But it's been difficult for researchers to ascertain how heat flows across intermediate gaps.

Now researchers at MIT, the University of Oklahoma, and Rutgers University have developed a model that explains how heat flows between objects separated by gaps of less than a nanometer. The team has developed a unified framework that calculates heat transport at finite gaps, and has shown that heat flow at sub-nanometer distances occurs not via radiation or conduction, but through "phonon tunneling."

Phonons represent units of energy produced by vibrating atoms in a crystal lattice. For example, a single crystal of table salt contains atoms of sodium and chloride, arranged in a lattice pattern. Together, the atoms vibrate, creating mechanical waves that can transport heat across the lattice.

Normally these waves, or phonons, are only able to carry heat within, and not between, materials. However, the new research shows that phonons can reach across a gap as small as a nanometer, "tunneling" from one material to another to enhance heat transport.

The researchers believe that phonon tunneling explains the physical mechanics of energy transport at this scale, which cannot be clearly attributed to either conduction or radiation.

"This is right in the regime where the language of conduction and radiation is blurred," says Vazrik Chiloyan, an MIT graduate student in mechanical engineering. "We're trying to come up with a clear picture of what the physics are in this regime. Now we've brought information together to demonstrate tunneling is, in fact, what's going on for the heat-transfer picture."

Chiloyan and Gang Chen, the Carl Richard Soderberg Professor of Power Engineering and head of MIT's Department of Mechanical Engineering, publish their results this week in Nature Communications.

Clearing the thermal picture
In the past few decades, researchers have attempted to define heat transport across ever-smaller distances. Several groups, including Chen's, have experimentally measured heat flow by thermal radiation across gaps as small as tens of nanometers. However, as experiments move to even smaller spacing, researchers have questioned the validity of current theories: Existing models have largely been based on theories for thermal radiation that Chiloyan says "smeared out the atomic detail," oversimplifying the flow of heat from atom to atom.

In contrast, there exists a theory for heat conduction - known as Green's functions - that describes heat flow at the atomic level for materials in contact. The theory allows researchers to calculate the frequency of vibrations that can travel across the interface between two materials.

"But with Green's functions, atom-to-atom interactions tend to drop off after a few neighbors. ... You'd artificially predict zero heat transfer after a few atom separations," Chiloyan says. "To actually predict heat transfer across the gap, you have to include long-range, electromagnetic forces."

Typically, electromagnetic forces can be described by Maxwell's equations - a set of four fundamental equations that outline the behavior of electricity and magnetism. To explain heat transfer at the microscopic scale, however, Chiloyan and Chen had to dig up the lesser-known form known as microscopic Maxwell's equations.

"Most people probably don't know there exists a microscopic Maxwell's equation, and we had to go to that level to bridge the atomic picture," Chen says.

Bridging the gap
The team developed a model of heat transport, based on both Green's functions and microscopic Maxwell's equations. The researchers used the model to predict heat flow between two lattices of sodium chloride, or table salt, separated by a nanometer-wide gap.

With the model, Chiloyan and Chen were able to calculate and sum up the electromagnetic fields emitted by individual atoms, based on their positions and forces within each lattice. While atomic vibrations, or phonons, typically cannot transport heat across distances larger than a few atoms, the team found that the atoms' summed electromagnetic force can create a "bridge" for phonons to cross.

When they modeled heat flow between two sodium chloride lattices, the researchers found that heat flowed from one lattice to the other via phonon tunneling, at gaps of one nanometer and smaller.

At sub-nanometer gaps "is a regime where we lack proper language," Chen says. "Now we've developed a framework to explain this fundamental transition, bridging that gap."

 

 

Particle smasher starts up again, says CERN

 
‎16 ‎April ‎2015, ‏‎09:05:00 AMGo to full article
Geneva (AFP) April 5, 2015 - The world's biggest particle collider was back in operation Sunday after a two-year upgrade, the European Organisation for Nuclear Research (CERN) said.

As part of the recommissioning process, engineers at the Large Hadron Collider (LHC) successfully introduced two proton beams, the source material for sub-atomic smashups.

All systems would be checked over coming days before the energy of the beams was increased, CERN said in a statement.

"After two years of intense maintenance and several months of preparation for restart, the Large Hadron Collider, the most powerful particle accelerator in the world, is back in operation," CERN said.

"Today (Sunday) at 10:42 am (0842 GMT) a proton beam was back in the 27-kilometre (17-mile) ring, followed at 12:27 pm by a second beam rotating in the opposite direction," it added.

CERN director for accelerators and technology described the LHC as "in great shape".

"But the most important step is still to come when we increase the energy of the beams to new record levels," he said.

A short-circuit in one of the LHC's magnet circuits eight days ago had delayed the eagerly-awaited restart.

The LHC comprises a ring-shaped tunnel straddling the Franco-Swiss border, in which two beams of protons are sent in opposite directions.

Powerful magnets bend the beams so that they collide at points around the track where four laboratories have batteries of sensors to monitor the smashups.

The sub-atomic rubble is then scrutinised for novel particles and the forces that hold them together.

In 2012, the LHC discovered the Higgs Boson, the particle that confers mass, earning the Nobel prize for two of the scientists who, back in 1964, had theorised its existence.

The upgrade was intended to beef up its maximum collision capacity from eight teraelectronvolts (TeV) to 14 TeV -- seven TeV for each of the two counter-rotating beams.

CERN said earlier that if all went well with the start-up particle collisions "at an energy of 13 TeV" could start as early as June.

During the next phase of the LHC programme, researchers will probe a conceptual frontier called new physics, with enigmatic "dark matter" the big area of interest.

Ordinary, visible matter comprises only about four percent of the known Universe.

 

 

Quantum teleportation on a chip

 
‎16 ‎April ‎2015, ‏‎09:05:00 AMGo to full article
Bristol, UK (SPX) Apr 02, 2015 - The core circuits of quantum teleportation, which generate and detect quantum entanglement, have been successfully integrated into a photonic chip by an international team of scientists from the universities of Bristol, Tokyo, Southampton and NTT Device Technology Laboratories. These results pave the way to developing ultra-high-speed quantum computers and strengthening the security of communication.

Qubits (quantum bits) are sensitive quantum versions of today's computer 0's and 1's (bits) and are the foundation of quantum computers. Photons are particles of light and they are a promising way to implement excellent qubits. One of the most important tasks is to successfully enable quantum teleportation, which transfers qubits from one photon to another.

However, the conventional experimental implementation of quantum teleportation fills a laboratory and requires hundreds of optical instruments painstakingly aligned, a far cry from the scale and robustness of device required in a modern day computer or handheld device.

In 2013, Professor Furusawa and his colleagues succeeded in realising perfect quantum teleportation, however, this required a set-up covering several square metres; took many months to build, and reached the limit in terms of scalability.

New research at the University of Bristol led by Professor Jeremy O'Brien has taken those optical circuits and implemented them on to a silicon microchip measuring just a few millimetres (0.0001 square metres) using state-of-the-art nano-fabrication methods.

This is the first time quantum teleportation has been demonstrated on a silicon chip and the result has radically solved the problem of scalability. The team of researchers have taken a significant step closer towards their ultimate goal of integrating a quantum computer into a photonic chip.

While there has been significant progress in current computing technology, its performance is now reaching the fundamental limit of classical physics. On the other hand, it has been predicted that principles of quantum mechanics will enable the development of ultra-secure quantum communication and ultra-powerful quantum computers, overcoming the limit of current technologies.

One of the most important steps in achieving this is to establish technologies for quantum teleportation (transferring signals of quantum bits in photons from a sender to a receiver at a distance). The implementation of teleportation on to a micro-chip is an important building block unlocking the potential for practical quantum technologies.

Professor Akira Furusawa from the University of Tokyo said: "This latest achievement enables us to perform the perfect quantum teleportation with a photonic chip. The next step is to integrate whole the system of quantum teleportation."

Professor Jeremy O'Brien, Director of the Centre for Quantum Photonics at the University of Bristol, who led the Bristol elements of the research, said: "Being able to replicate an optical circuit which would normally require a room sized optical table on a photonic chip is a hugely significant achievement. In effect, we have reduced a very complex quantum optical system by ten thousand in size."

The research is published this week in Nature Photonics. Paper: 'Continuous-variable entanglement on a chip' by G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O'Brien and A. Furusawa in Nature Photonics.

 

 

Super sensitive measurement of magnetic fields

 
‎16 ‎April ‎2015, ‏‎09:05:00 AMGo to full article
Copenhagen, Denmark (SPX) Mar 31, 2015 - There are electrical signals in the nervous system, the brain and throughout the human body and there are tiny magnetic fields associated with these signals that could be important for medical science. Researchers from the Niels Bohr Institute have just developed a method that could be used to obtain extremely precise measurements of ultra-small magnetic fields. The results are published in the scientific journal Nature Physics.

The tiny magnetic fields are all the way down on the atomic level. The atoms do not stand still, they revolve around themselves and the axis is like a tiny magnetic rod. But the axis has a slight tilt and as a result the magnetic rod swings in circles. To measure a swinging object you need to have both its position and the speed of the oscillation.

But in the world of atoms, the laws of classical physics from the world as we know it do not apply - here the laws of quantum physics rule. Heisenberg and Bohr's laws of quantum uncertainty relations state that when one measures a system, you cannot simultaneously measure the position of a particle and its speed and get a precise number. You can measure one of these variables, for example, the position and get a number with almost unlimited precision.

In the same measurement, the speed of the particle would then be uncertain. If you measure the precise speed of the particle, you would then get an uncertain position in the same measurement. Likewise, the laws of quantum physics state then when you measure a rotating motion, you cannot simultaneously measure the rotational speed and direction of the rotational axis.

Precise squeezed measurements
"To get accurate measurements of ultra-small magnetic fields, we have devised a way to almost escape the limitations of quantum physics and we have conducted experiments in the laboratory where we improve the measurements of the oscillating atoms. The newly developed sensor that can measure the ultra-small magnetic field is comprised of a collection of atoms in gaseous form," explains professor Eugene Polzik, head of the research group Quantop at the Niels Bohr Institute at the University of Copenhagen.

In the quantum optics laboratory, the researchers have a small glass tube that contains a cloud of billions of caesium gas atoms. The glass tube is 10 millimeters long and has a diameter of only 300 micrometers (a micrometer is one millionth of a meter).

The atoms revolve around themselves on a tilted axis, but the gas atoms are flying around helter skelter and the tilted axes of the atoms are oriented in all possible directions. Using laser light, the tilts of all the atoms are turned in the same direction. This direction could be knocked off course when the atoms crash into the glass wall, but the glass tube has an inner coating that ensures they hold course.

Now the researchers send a new beam of laser light with a different frequency into the gas atoms and then a strange quantum phenomenon takes place, the light and the gas atoms become entangled. The fact that they are entangled means that they have established a quantum link - they are synchronised and are now totally aligned.

The laser light is sent with a certain pulse and you can now measure the direction of the atomic axis, but only one direction. This means that when the atoms revolve around themselves, its tilted axis forms a circle and you cannot measure the precise position of the entire circular swing of the axis. But you can divide a circle into a north/south direction and an east/west direction.

"What we then do is measure one of the directions, for example, the east/west direction. This is called a squeezed state and this can be measured with very little inaccuracy. This is very useful, because for many measurements of external magnetic fields it is only necessary to measure the east/west direction and thus we can calculate the ultra-small magnetic fields with high precision," says Eugene Polzik.

Super sensitive measurements of tiny electromagnetic fields and forces are important in relation to research in biology and medicine and the research group therefore has a collaboration with the doctors at the Faculty of Health and Medical Sciences at the University of Copenhagen.

 

 

Black hole winds pull the plug on star formation

 
‎12 ‎April ‎2015, ‏‎05:42:03 AMGo to full article
Paris (ESA) Mar 30, 2015 - Astronomers using ESA's Herschel space observatory have found that the winds blowing from a huge black hole are sweeping away its host galaxy's reservoir of raw star-building material. Found at the hearts of most galaxies, supermassive black holes are extremely dense and compact objects with masses between millions and billions of times that of our Sun.

Many are relatively passive, like the one sitting at the centre of our Milky Way. However, some of them are devouring their surroundings with a great appetite.

These active black holes not only feed on nearby gas but also expel some of it as powerful winds and jets. Astronomers have long suspected these outflows to be responsible for draining galaxies of their interstellar gas, in particular the gas molecules from which stars are born. This could eventually affect a galaxy's star-forming activity, slowing it down or possibly quenching it entirely.

Until now, it had not been possible to capture a complete view of this process. While astronomers were able to detect winds very close to black holes using X-ray telescopes, and to trace much larger galactic outflows of gas molecules through infrared observations, they had not succeeded at finding both in the same galaxy.

A new study has changed the scene, detecting winds driven by one particular black hole from the smallest to largest scales.

"This is the first time that we have seen a supermassive black hole in action, blowing away the galaxy's reservoir of star-making gas," explains Francesco Tombesi from NASA's Goddard Space Flight Center and the University of Maryland, USA, who led the research published this week in Nature.

Combining infrared observations from ESA's Herschel space observatory with new data from the Japanese/US Suzaku X-ray satellite, the astronomers detected the winds close to the central black hole as well as their global effect in pushing galactic gas away in a galaxy known as IRAS F11119+3257.

The winds start small and fast, gusting at about 25% the speed of light near the black hole and blowing away about the equivalent of one solar mass of gas every year. As they progress outwards, the winds slow but sweep up an additional few hundred solar masses of gas molecules per year and push it out of the galaxy.

This is the first solid proof that black-hole winds are stripping their host galaxies of gas by driving large-scale outflows. The new finding supports the view that black holes might ultimately stop stars forming in their host galaxies.

"Herschel has already revolutionised our understanding of how stars are born. This new result is now helping us understand why and how star formation in some galaxies can be globally affected and even switched off entirely," says Goran Pilbratt, Herschel Project Scientist at ESA. "The culprit of this cosmic 'whodunnit' has been found. As many suspected, a central black hole can power large-scale gas outflows, quenching the formation of stars."

"Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy," by F. Tombesi, et al., is published in the 26 March 2015 issue of the journal Nature.

 

 

Science: Theory of the strong interaction verified

 
‎12 ‎April ‎2015, ‏‎05:42:03 AMGo to full article
Julich, Germany (SPX) Mar 30, 2015 - The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after the discovery of the neutron, a team of physicists from France, Germany, and Hungary headed by Zoltan Fodor, a researcher from Wuppertal, has finally calculated the tiny neutron-proton mass difference.

The findings, which have been published in the current edition of Science, are considered a milestone by many physicists and confirm the theory of the strong interaction. As one of the most powerful computers in the world, JUQUEEN at Forschungszentrum Julich was decisive for the simulation.

The existence and stability of atoms relies heavily on the fact that neutrons are slightly more mas-sive than protons. The experimentally determined masses differ by only around 0.14 percent.

A slightly smaller or larger value of the mass difference would have led to a dramatically different universe, with too many neutrons, not enough hydrogen, or too few heavier elements. The tiny mass difference is the reason why free neutrons decay on average after around ten minutes, while protons - the unchanging building blocks of matter - remain stable for a practically unlimited period.

In 1972, about 40 years after the discovery of the neutron by Chadwick in 1932, Harald Fritzsch (Germany), Murray Gell-Mann (USA), and Heinrich Leutwyler (Switzerland) presented a consistent theory of particles and forces that form the neutron and the proton known as quantum chromodynamics.

Today, we know that protons and neutrons are composed of "up quarks" and "down quarks". The proton is made of one down and two up quarks, while the neutron is composed of one up and two down quarks.

Simulations on supercomputers over the last few years confirmed that most of the mass of the proton and neutron results from the energy carried by their quark constituents in accordance with Einstein's formula E=mc2. However, a small contribution from the electromagnetic field surrounding the electrically charged proton should make it about 0.1 percent more massive than the neutral neutron. The fact that the neutron mass is measured to be larger is evidently due to the different masses of the quarks, as Fodor and his team have now shown in extremely complex simulations.

For the calculations, the team developed a new class of simulation techniques combining the laws of quantum chromodynamics with those of quantum electrodynamics in order to precisely deter-mine the effects of electromagnetic interactions. By controlling all error sources, the scientists suc-cessfully demonstrated how finely tuned the forces of nature are.

Professor Kurt Binder is Chairman of the Scientific Council of the John von Neumann Institute for Computing (NIC) and member of the German Gauss Centre for Supercomputing. Both organizations allocate computation time on JUQUEEN to users in a competitive process.

"Only using world-class computers, such as those available to the science community at Forschungszentrum Julich, was it possible to achieve this milestone in computer simulation," says Binder. JUQUEEN was supported in the process by its "colleagues" operated by the French science organizations CNRS and GENCI as well as by the computing centres in Garching (LRZ) and Stuttgart (HLRS).

The results of this work by Fodor's team of physicists from Bergische Universitat Wuppertal, Centre de Physique Theorique de Marseille, Eotvos University Budapest, and Forschungszentrum Julich open the door to a new generation of simulations that will be used to determine the properties of quarks, gluons, and nuclear particles.

According to Professor Kalman Szabo from Forschungszentrum Julich, "In future, we will be able to test the standard model of elementary particle physics with a tenfold increase in precision, which could possibly enable us to identify effects that would help us to uncover new physics beyond the standard model."

"Forschungszentrum Julich is supporting the work of excellent researchers in many areas of science with its supercomputers. Basic research such as elementary particle physics is an area where methods are forged, and the resulting tools are also welcomed by several other users," says Prof. Dr. Sebastian M. Schmidt, member of the Board of Directors at Julich who has supported and encouraged these scientific activities for years.

 

 

Physicists solve low-temperature magnetic mystery

 
‎12 ‎April ‎2015, ‏‎05:42:03 AMGo to full article
Mansfield CT (SPX) Mar 27, 2015 - Researchers have made an experimental breakthrough in explaining a rare property of an exotic magnetic material, potentially opening a path to a host of new technologies. From information storage to magnetic refrigeration, many of tomorrow's most promising innovations rely on sophisticated magnetic materials, and this discovery opens the door to harnessing the physics that governs those materials.

The work, led by Brookhaven National Laboratory physicist Ignace Jarrige, and University of Connecticut professor Jason Hancock, together with collaborators at the Argonne National Laboratory and in Japan, marks a major advance in the search for practical materials that will enable several types of next-generation technology. A paper describing the team's results was published this week in the journal Physical Review Letters.

The work is related to the Kondo Effect, a physical phenomenon that explains how magnetic impurities affect the electrical resistance of materials. The researchers were looking at a material called ytterbium-indium-copper-four (usually written using its chemical formula: YbInCu4).

YbInCu4 has long been known to undergo a unique transition as a result of changing temperature. Below a certain temperature, the material's magnetism disappears, while above that temperature, it is strongly magnetic.

This transition, which has puzzled physicists for decades, has recently revealed its secret. "We detected a gap in the electronic spectrum, similar to that found in semiconductors like silicon, whose energy shift at the transition causes the Kondo Effect to strengthen sharply," said Jarrige.

Electronic energy gaps define how electrons move (or don't move) within the material, and are the critical component in understanding the electrical and magnetic properties of materials. "Our discovery goes to show that tailored semiconductor gaps can be used as a convenient knob to finely control the Kondo Effect and hence magnetism in technological materials," said Jarrige.

To uncover the energy gap, the team used a process called Resonant Inelastic X-Ray Scattering (RIXS), a new experimental technique that is made possible by an intense X-ray beam produced at a synchrotron operated by the Department of Energy and located at Argonne National Laboratory outside of Chicago. By placing materials in the focused X-ray beam and sensitively measuring and analyzing how the X-rays are scattered, the team was able to uncover elusive properties such as the energy gap and connect them to the enigmatic magnetic behavior.

The new physics identified through this work suggest a roadmap to the development of materials with strong "magnetocaloric" properties, the tendency of a material to change temperature in the presence of a magnetic field.

"The Kondo Effect in YbInCu4 turns on at a very low temperature of 42 Kelvin (-384F)," said Hancock, "but we now understand why it happens, which suggests that it could happen in other materials near room temperature." If that material is discovered, according to Hancock, it would revolutionize cooling technology.

Household use of air conditioners in the US accounts for over $11 billion in energy costs and releases 100 million tons of carbon dioxide annually. Use of the magnetocaloric effect for magnetic refrigeration as an alternative to the mechanical fans and pumps in widespread use today could significantly reduce those numbers.

In addition to its potential applications to technology, the work has advanced the state of the art in research. "The RIXS technique we have developed can be applied in other areas of basic energy science," said Hancock, noting that the development is very timely, and that it may be useful in the search for "topological Kondo insulators," materials which have been predicted in theory, but have yet to be discovered.

 

 

Quantum experiment verifies Einstein's 'spooky action at a distance'

 
‎12 ‎April ‎2015, ‏‎05:42:03 AMGo to full article
Brisbane, Australia (SPX) Mar 27, 2015 - An experiment devised in Griffith University's Centre for Quantum Dynamics has for the first time demonstrated Albert Einstein's original conception of "spooky action at a distance" using a single particle.

In a paper published in the journal Nature Communications, CQD Director Professor Howard Wiseman and his experimental collaborators at the University of Tokyo report their use of homodyne measurements to show what Einstein did not believe to be real, namely the non-local collapse of a particle's wave function.

According to quantum mechanics, a single particle can be described by a wave function that spreads over arbitrarily large distances, but is never detected in two or more places.

This phenomenon is explained in quantum theory by what Einstein disparaged in 1927 as "spooky action at a distance", or the instantaneous non-local collapse of the wave function to wherever the particle is detected.

Almost 90 years later, by splitting a single photon between two laboratories, scientists have used homodyne detectors -- which measure wave-like properties -- to show the collapse of the wave function is a real effect.

This phenomenon is the strongest yet proof of the entanglement of a single particle, an unusual form of quantum entanglement that is being increasingly explored for quantum communication and computation.

"Einstein never accepted orthodox quantum mechanics and the original basis of his contention was this single-particle argument. This is why it is important to demonstrate non-local wave function collapse with a single particle," says Professor Wiseman.

"Einstein's view was that the detection of the particle only ever at one point could be much better explained by the hypothesis that the particle is only ever at one point, without invoking the instantaneous collapse of the wave function to nothing at all other points.

"However, rather than simply detecting the presence or absence of the particle, we used homodyne measurements enabling one party to make different measurements and the other, using quantum tomography, to test the effect of those choices."

"Through these different measurements, you see the wave function collapse in different ways, thus proving its existence and showing that Einstein was wrong."

 

 

Supermassive black hole clears star-making gas from galaxy's core

 
‎08 ‎April ‎2015, ‏‎05:03:23 AMGo to full article
College Park MD (SPX) Mar 26, 2015 - Many nearby galaxies blast huge, wide-angled outpourings of material from their center, ejecting enough gas and dust to build more than a thousand stars the size of our sun every year. Astronomers have sought the driving force behind these massive molecular outflows, and now a team led by University of Maryland scientists has found an answer.

A new study in the journal Nature provides the first observational evidence that a supermassive black hole at the center of a large galaxy can power these huge molecular outflows from deep inside the galaxy's core. These outflows remove massive quantities of star-making gas, thus influencing the size, shape and overall fate of the host galaxy.

The galaxy highlighted in the study, known as IRAS F11119+3257, has an actively growing supermassive black hole at its center. This means that, unlike the large black hole at the center of our own Milky Way galaxy, this black hole is actively consuming large amounts of gas. As material enters the black hole, it creates friction, which in turn gives off electromagnetic radiation--including X-rays and visible light.

Black holes that fit this description are called active galactic nuclei (AGN), and their intense radiation output also generates powerful winds that force material away from the galactic center. The study found that these AGN winds are powerful enough to drive the large molecular outflows that reach to the edges of the galaxy's borders.

Although theorists have suspected a connection between AGN winds and molecular outflows, the current study is the first to confirm the connection with observational evidence.

"This is the first galaxy in which we can see both the wind from the active galactic nucleus and the large-scale outflow of molecular gas at the same time," said lead author Francesco Tombesi, an assistant research scientist in UMD's astronomy department who has a joint appointment at NASA's Goddard Space Flight Center via the Center for Research and Exploration in Space Science and Technology.

The team analyzed data collected in 2013 by Suzaku, an X-ray satellite operated by the Japan Aerospace Exploration Agency (JAXA) and NASA, as well as data from the European Space Agency's Herschel Space Observatory. While many previous studies independently described AGN winds and molecular outflows in separate galaxies, Tombesi and his colleagues needed to find a galaxy in which they could see both at the same time. IRAS F11119+3257 turned out to be a perfect candidate.

An alternate theory says that active star formation near the galactic center could drive molecular outflows. However, the brightness of IRAS F11119+3257's active nucleus--which is responsible for about 80 percent of the galaxy's overall radiation--suggested otherwise. Star formation alone cannot explain this intense concentration of energy, leading the researchers to conclude that the AGN winds must be the primary driver.

"The temptation is to ignore the supermassive black hole when studying galactic dynamics and evolution, but our study shows that you can't because it influences galaxies on the larger scale," said Marcio Melendez, a research associate in UMD's astronomy department and a co-author of the study.

Limited satellite time means that, at least for now, the team has only this one galaxy as a baseline for study. But now that they have a better idea what they are looking for, they will be able to find more candidate galaxies in the future. Within the next year, JAXA and NASA will launch ASTRO-H, a successor satellite to Suzaku. The instruments aboard ASTRO-H will make it possible to study more galaxies like IRAS F11119+3257 in greater detail.

"These are not like normal spiral or elliptical galaxies. They're like train wrecks," said Sylvain Veilleux, a professor of astronomy at UMD and a fellow at the Joint Space-Science Institute (JSI) who is also a co-author of the study. "Two galaxies collided with each other, and it's now a single object. This train wreck provided all the material to feed the supermassive black hole that is now driving the huge galactic-scale outflow."

 

 

Behind the dogmas of good old hydrodynamics

 
‎08 ‎April ‎2015, ‏‎05:03:23 AMGo to full article
Moscow (SPX) Mar 27, 2015 - A new theory, which gives new insights into the transport of liquid flowing along the surface under applied electric field, was developed by the group of Russian scientists lead by Olga Vinogradova who is a professor at the M.V.Lomonosov Moscow State University and also a head of laboratory at the A.N. Frumkin Institute of Physical chemistry and Electrochemistry of the Russian Academy of Sciences.

It may be used in the future in research in physics, chemistry and biology and in many applications including medicine and pharmaceutics. The article describing the theory and simulations is published in Physical Review Letter which is one of the one of the most prestigious journals in physics. It's impact factor is 7.8.

The motion of liquid through the capillaries, porous membranes, or thin channel under applied electric field is called an electroosmotic flow. This effect was discovered by the professor of the Moscow University Ferdinand Friedrich Reuss in 1807 during a pretty simple experiment.

It involves the curved glass tube filled with water and its bend filled with insoluble powdered substance such as grated stone or sand which creates a porous barrier separating both ends of the tube from each other. When the voltage is applied to the water, it begins to seep through the barrier as shown in Figure 2. The motion of dispersed particles relative to a fluid under the influence of electric field was named electrophoresis.

Behind the apparent simplicity of the effect lies pretty complicated physics. It was understood only a century later in 1909 when the Polish physicist Marian Smoluchowski succeeded in describing the process of electroosmotic flow theoretically.

Nobody questioned his theory during the XX century, and now it turned to be only a special case of more general theory. Moreover, it is applicable only to cases similar to Smoluchowski's one when the liquid flows past the wettable hydrophilic surface and no-slip boundary conditions are taken into account. Now it appears that entirely different conditions are needed to be applied in cases of hydrophobic poorly wettable surfaces.

This small "nuance" was discovered just in time, because such sciences as microfluidics and nanofluidics deal with the fluid flowing through ultrathin channels. And it is difficult to drive flows mechanically in extremely thin channels even by applying a pressure drop which in this case should be enormously high. However, if the conventional pump is replaced by the battery, then it is possible to establish fast electroosmotic flow in the ultrathin channel.

Sometimes physicists have to leave behind the dogmas of good old hydrodynamics. The authors of the article, who in addition to Olga Vinogradova are the young scientists Salim Maduar and Alexey Belyaev, have shown theoretically and confirmed in computer experiments that in quantitative description of flows in electric fields for hydrophobic surface electro-hydrodynamic slip boundary condition should be imposed. The new approach has immediately changed the picture.

Tthe electro-osmotic flow is caused by the cloud of ions with the opposite sign, which forms near the charged surface of the fluid. There are two possible cases. In the first one the surface charges are immobile and able to move along the surface under the electric field applied. In the case of immobile charges everything is relatively simple as the speed of electro-osmotic flow increases due to hydrophobic slippage.

In case surface charges can react on the applied electric field, as scientists imply, lots of different variants arise, some of which are quite unexpected. For instance, in the article it is shown that it is possible to induce the electro-osmotic flow even near uncharged surface, or, on the contrary, to suppress such a flow completely in the channels with perfectly slipping charged walls.

The lead role in the Smoluchowski theory was given to so-called zeta potential which is a physiochemical parameter calculated with a special formula and reflects the degree of electroosmotic and electrophoretic mobility. The higher the zeta potential is the faster is the flow of a liquid or particle motion.

Until recently zeta potential was considered equal to the surface potential of the solid at its boundary with the liquid. In the new theory zeta-potential also plays the leading role, but its interpretation became much more complicated.

"In the Smoluchowski theory zeta potential is equal to the potential of the surface itself and is independent of neighbouring surfaces, -- Olga Vinogradova explains -- These conclusions are the result of the classical no-slip hydrodynamic conditions". Olga Vinorgradova and her colleagues have shown that in the case of hydrophobic surfaces it occurs differently as the hydrophobic surfaces are slippery and ions associated with the slippery surface can respond to an electric field.

So zeta potential appears to be connected with the parameters which characterize the mobility of surface charge and hydrodynamic slippage on the surface and the dependency of the possible presence of the other surface.

The new theory makes life both more complicated and more coherent as it has immediately allowed to resolve a number of paradoxes, which were doubtful for years. For instance, it gave an explanation to the zeta potential measurements of bubbles and drops.

"These measurements have been consistently showing that their zeta potentials are similar to those of the solid body" - Olga Vinogradova says - "Which was explained in particular by the presence of impurities on the surfaces of bubbles and drops. We have shown that the impurities are irrelevant and that zeta potential in this case is indeed the same as for the solid body, but due to completely different reasons." The theory also helped to understand the highly debated electro-osmotic flows in foam films.

According to Olga Vinogradova, the possible practical implementations of the new theory are quite extensive at least for the reason that the concept of zeta potential is widely used in many fields of science and technology, such as medicine, pharmaceuticals, mineral processing, water treatment, purification of soil from pollution and even more.

New interpretation of the parameter will give a better understanding of the results of its experimental measurements and will also make possible to control its value. Particularly promising application of the new theory lies in the field of microfluidics and nanofluidics. Especially it could be used for the creation of Lab-on-a-Chip (LOC) devices and nanofluidic diodes, which are already used for the detection and the separation of biomolecules and for the energy harvesting.

"Without no doubt, the path from the new theory to practical applications is always very long, -- Olga Vinogradova says, -- And I suppose the experimentalists would be the first ones to use our results."

 

 

Thousands of atoms entangled with a single photon

 
‎08 ‎April ‎2015, ‏‎05:03:23 AMGo to full article
Boston MA (SPX) Mar 27, 2015 - Physicists from MIT and the University of Belgrade have developed a new technique that can successfully entangle 3,000 atoms using only a single photon. The results, published today in the journal Nature, represent the largest number of particles that have ever been mutually entangled experimentally.

The researchers say the technique provides a realistic method to generate large ensembles of entangled atoms, which are key components for realizing more-precise atomic clocks.

"You can make the argument that a single photon cannot possibly change the state of 3,000 atoms, but this one photon does -- it builds up correlations that you didn't have before," says Vladan Vuletic, the Lester Wolfe Professor in MIT's Department of Physics, and the paper's senior author. "We have basically opened up a new class of entangled states we can make, but there are many more new classes to be explored."

Vuletic's co-authors on the paper are Robert McConnell, Hao Zhang, and Jiazhong Hu of MIT, as well as Senka Cuk of the University of Belgrade.

Atomic entanglement and timekeeping
Entanglement is a curious phenomenon: As the theory goes, two or more particles may be correlated in such a way that any change to one will simultaneously change the other, no matter how far apart they may be. For instance, if one atom in an entangled pair were somehow made to spin clockwise, the other atom would instantly be known to spin counterclockwise, even though the two may be physically separated by thousands of miles.

The phenomenon of entanglement, which physicist Albert Einstein once famously dismissed as "spooky action at a distance," is described not by the laws of classical physics, but by quantum mechanics, which explains the interactions of particles at the nanoscale. At such minuscule scales, particles such as atoms are known to behave differently from matter at the macroscale.

Scientists have been searching for ways to entangle not just pairs, but large numbers of atoms; such ensembles could be the basis for powerful quantum computers and more-precise atomic clocks. The latter is a motivation for Vuletic's group.

Today's best atomic clocks are based on the natural oscillations within a cloud of trapped atoms. As the atoms oscillate, they act as a pendulum, keeping steady time. A laser beam within the clock, directed through the cloud of atoms, can detect the atoms' vibrations, which ultimately determine the length of a single second.

"Today's clocks are really amazing," Vuletic says. "They would be less than a minute off if they ran since the Big Bang -- that's the stability of the best clocks that exist today. We're hoping to get even further."

The accuracy of atomic clocks improves as more and more atoms oscillate in a cloud. Conventional atomic clocks' precision is proportional to the square root of the number of atoms: For example, a clock with nine times more atoms would only be three times as accurate.

If these same atoms were entangled, a clock's precision could be directly proportional to the number of atoms -- in this case, nine times as accurate. The larger the number of entangled particles, then, the better an atomic clock's timekeeping.

Picking up quantum noise
Scientists have so far been able to entangle large groups of atoms, although most attempts have only generated entanglement between pairs in a group. Only one team has successfully entangled 100 atoms -- the largest mutual entanglement to date, and only a small fraction of the whole atomic ensemble.

Now Vuletic and his colleagues have successfully created a mutual entanglement among 3,000 atoms, virtually all the atoms in the ensemble, using very weak laser light -- down to pulses containing a single photon. The weaker the light, the better, Vuletic says, as it is less likely to disrupt the cloud. "The system remains in a relatively clean quantum state," he says.

The researchers first cooled a cloud of atoms, then trapped them in a laser trap, and sent a weak laser pulse through the cloud. They then set up a detector to look for a particular photon within the beam.

Vuletic reasoned that if a photon has passed through the atom cloud without event, its polarization, or direction of oscillation, would remain the same. If, however, a photon has interacted with the atoms, its polarization rotates just slightly -- a sign that it was affected by quantum "noise" in the ensemble of spinning atoms, with the noise being the difference in the number of atoms spinning clockwise and counterclockwise.

"Every now and then, we observe an outgoing photon whose electric field oscillates in a direction perpendicular to that of the incoming photons," Vuletic says. "When we detect such a photon, we know that must have been caused by the atomic ensemble, and surprisingly enough, that detection generates a very strongly entangled state of the atoms."

Vuletic and his colleagues are currently using the single-photon detection technique to build a state-of-the-art atomic clock that they hope will overcome what's known as the "standard quantum limit" -- a limit to how accurate measurements can be in quantum systems. Vuletic says the group's current setup may be a step toward developing even more complex entangled states.

"This particular state can improve atomic clocks by a factor of two," Vuletic says. "We're striving toward making even more complicated states that can go further."

This research was supported in part by the National Science Foundation, the Defense Advanced Research Projects Agency, and the Air Force Office of Scientific Research.

 

 

Quantum correlation can imply causation

 
‎01 ‎April ‎2015, ‏‎07:08:37 AMGo to full article
Ontario, Canada (SPX) Mar 26, 2015 - Contrary to the statistician's slogan, in the quantum world, certain kinds of correlations do imply causation.

Research from the Institute for Quantum Computing (IQC) at the University of Waterloo and the Perimeter Institute for Theoretical Physics shows that in quantum mechanics, certain kinds of observations will let you distinguish whether there is a common cause or a cause-effect relation between two variables. The same is not true in classical physics.

Explaining the observed correlations among a number of variables in terms of underlying causal mechanisms, known as the problem of 'causal inference', is challenging but experts in field of machine learning have made significant progress in recent years Physicists are now exploring how this problem appears in a quantum context.

Causal inference hinges on the distinction between correlation and causation. "If A and B are correlated, then when you learn about A, you update your knowledge of B - this is inference. If A causes B, then by manipulating A, you can control B - this is influence," said Robert Spekkens, a faculty member at Perimeter Institute and the Department of Physics and Astronomy at Waterloo. "In quantum foundations, this distinction is key."

Knowing if a correlation arises from a cause-effect relation or a common cause relation is a fundamental problem in science. A prime example: drug trials. When physicians observe a correlation between treatment and recovery, they cannot presume that the treatment is the cause of the recovery. If men are more likely to choose the treatment and also more likely to recover spontaneously, regardless of treatment, then the correlation would be explained by a common cause.

That is why, when testing treatments, pharmaceutical companies intervene and randomly assign either the drug or a placebo to participants. This ensures that the treatment variable is statistically independent of any potential common causes. This is a general feature of classical statistics: one needs to intervene in order to determine whether the correlations are due to a cause-effect relation, a common cause relation, or a mix of both.

The paper, published in Nature Physics, demonstrates that quantum effects can eliminate the need for intervention. "This research provides a new way to think about quantum mechanics," said Professor Kevin Resch, Canada Research Chair in Optical Quantum Technologies in the Department of Physics and Astronomy. "It's also a really useful framework for thinking about foundational problems."

Spekkens, along with PhD student Katja Ried and fellow theorist Dominik Janzing, considered the situation of an observer who is probing two variables and finds them to be correlated.

The observer doesn't know whether this is because they are the input and output of a quantum process, that is, cause-effect related, or because they are the two halves of an entangled quantum state, and therefore correlated by a common cause. They realized that certain patterns of correlations are distinctive to each scenario.

Spekkens with Resch and Ried in Resch's Quantum Optics and Quantum Information Lab.

Resch, together with his students Megan Agnew and Lydia Vermeyden, had the tools to put this idea to the test. They built a photonic circuit that could switch between the two scenarios proposed by the theorists, allowing them to vary the causal structure realized by the experiment.

Their results confirmed that the quantum effects of entanglement and coherence provide an advantage for causal inference. This parallels the way in which quantum effects can help to solve computational problems and make cryptography more secure. Thinking about which practical tasks are easier in a quantum world has traditionally led to many insights into its foundations.

The team describes their work as opening the door to answering questions such as: How can these techniques be generalized to scenarios involving more than two systems? Is the menu of possible causal relations between quantum systems larger than between classical systems? How should we understand causality in a quantum world?

 

 

Short circuit delays particle hunter machine restart

 
‎01 ‎April ‎2015, ‏‎07:08:37 AMGo to full article
Geneva (AFP) March 25, 2015 - A short-circuit at the world's largest proton smasher has indefinitely delayed the particle-hunting machine's planned restart, the European Organisation for Nuclear Research (CERN) said on Wednesday.

The error occurred last Saturday in one of the Large Hadron Collider's (LHC) magnet circuits, the laboratory said in a statement.

"It is a well understood issue, but one that could take time to resolve," it said.

The LHC is a 27-kilometre (17-mile) ring-shaped tunnel, in which two beams of protons are sent in opposite directions.

Powerful magnets bend the beams so that they collide at points around the track where four laboratories have clusters of sensors.

Some of the protons smash together, creating sub-atomic rubble that may hold clues to novel particles, from which physicists hope to learn more about the fundamental building blocks of all matter, and the forces that control them.

In 2012, scientists at CERN, one of the world's top research centres on particle physics, announced they had discovered the Higgs boson, until then only theorised as the mass-giver to all matter -- a feat crowned with the 2013 Nobel Prize in physics.

The LHC has since undergone a two-year upgrade that nearly doubled its muscle.

The lab's super-powered hunt for particles that may change our understanding of the universe, was due to resume any day now.

Beams containing billions of protons travelling at 99.9-percent the speed of light, were to have begun recirculating in late March, while collisions had been planned for end-May or early June.

But post short-circuit repairs may take weeks, said CERN, a giant lab straddling the Swiss-French border near Geneva.

"In the grand scheme of things, a few weeks' delay in humankind's quest to understand our universe is little more than the blink of an eye," CERN director Rolf Heuer said.

Scientists hope the new run of the LHC will shed light on theoretical concepts like dark matter and dark energy, and possible extra dimension.

 

 

Black holes and the dark sector explained by quantum gravity

 
‎27 ‎March ‎2015, ‏‎04:12:54 AMGo to full article
Washington DC (SPX) Mar 24, 2015 - Ask any theoretical physicist on what are the most profound mysteries in physics and you will be surprised if she mentions anything other than Quantum Gravity and the Dark Sector. Questions such as how do we reconcile GR and Quantum Theory? What is Dark Matter? And what is Dark Energy? These are what keep most physicists awake late at night. Suggested solutions to these problems are manifold but all fall short of providing a satisfactory explanation.

The situation is set to change however as a new theory authored by Lic. Stuart Marongwe who holds a licentiate degree in physics and electronics from Jose Varona University in Havana, Cuba now stationed at the physics Department of McConnell College in Botswana, provides a self-consistent theory of Quantum Gravity which explains the Dark sector and is in agreement with observations.

The theory is known as Nexus in the sense that it provides a link between Quantum Theory and GR. This link manifests in the form of the Nexus graviton- a composite spin 2 particle of space-time which emerges naturally from the unification process.

One remarkable feature of the Nexus graviton which distinguishes it from the graviton hypothesized in the Standard Model is that it is not a messenger particle but rather it induces a constant rotational motion on any test particle embedded within its confines. Moreover the Nexus graviton can also be considered as a globule of vacuum energy which can merge and de-merge with others in a process that resembles cytokineses in cell biology.

The Nexus graviton is Dark Matter and constitutes space-time. The emission of a graviton of least energy by a high energy graviton results in the expansion of the high energy graviton as it assumes a lower energy state. This process manifests as Dark Energy and takes place throughout space-time as the theory explains.

This paper is significant in the sense that it sheds some light on some of the most perplexing questions in physics which include a quantum description of Black Holes without singularities inherent in classical GR.The solutions provided in this paper will certainly open doors to new physics.

The paper can be found in International Journal of Geometric Methods in Modern Physics (IJGMMP).

 

 

Frozen highly charged ions for highest precision spectroscopy

 
‎27 ‎March ‎2015, ‏‎04:12:54 AMGo to full article
Heidelberg, Germany (SPX) Mar 16, 2015 - A team of researchers from the Max Planck Institute for Nuclear Physics in Heidelberg, the Physikalisch-Technische Bundesanstalt in Braunschweig and the University of Aarhus in Denmark demonstrated for the first time Coulomb crystallization of highly-charged ions (HCIs). Inside a cryogenic radiofrequency ion trap the HCIs are cooled down to sub-Kelvin temperatures by interaction with laser-cooled singly charged Beryllium ions.

The new method opens the field of laser spectroscopy of HCIs providing the basis for novel atomic clocks and high-precision tests of the variability of natural constants. [Science, March 13 2015]

Atoms can lose many of their electrons at very high temperatures, forming highly-charged ions (HCIs). Such HCIs constitute a large class of atomic systems offering various new possibilities for high precision studies in metrology, astrophysics, and even for the search for new physics beyond the Standard Model of particle physics.

Over the last few decades, laser spectroscopy of cold atoms or low-charge state ions has developed into today's most powerful method for high-precision measurements.

However, this was so far restricted to a few atomic and ionic species, and the preparation of cold HCIs constituted a major challenge in atomic physics up to now.

The main obstacle arises from the usual production methods for HCIs, which require high temperatures of millions of degrees. But in order to exploit the power of laser spectroscopy, temperatures of less than one degree above absolute zero have to be reached; i. e. the thermal energy of the ions has to be reduced by a factor of at least 10 million.

In a joint project by the Max Planck Institute for Nuclear Physics Heidelberg (MPIK), the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig and Aarhus University, a team of physicists succeeded in cooling HCIs down to sub-Kelvin temperatures and freezing their motion in vacuum forming a so-called Coulomb crystal. The procedure was demonstrated for the first time at MPIK in the group under Jose Crespo Lopez-Urrutia.

It involves three steps (Fig. 1), explains PhD student Lisa Schmoger, who built the deceleration set-up and carried out the reported experiment: First, HCIs are generated in Hyper-EBIT, an ion source which produces and confines ions at a million degrees temperature inside a dense and energetic electron beam in an extreme vacuum.

Bunches of HCIs are then extracted from this trap, transferred through a vacuum beamline, slowed down and pre-cooled with a pulsed linear deceleration potential.

The ions are very delicately transported into, and eventually confined in, CryPTEx, a cryogenic radiofrequency Paul trap developed at the MPIK in collaboration with Michael Drewsen's group in Aarhus. Inside this trap, the HCIs bounce back and forth between mirror electrodes, slowly losing speed before they become embedded in a laser-cooled ensemble of light ions (singly-charged beryllium) which provide a cooling bath for the HCIs (providing so-called indirect or sympathetic cooling).

In a radiofrequency trap, the confined, mutually repelling ions are forced to share a small volume in space by a combination of electrostatic and oscillating electric fields inside a vacuum chamber.

Additionally, the millimeter-sized beryllium ion cloud is cooled by a special laser such that the ions freeze out and form a Coulomb crystal once their thermal motion becomes negligible compared with their electric repulsion. Sophisticated laser systems built at the PTB by Oscar Versolato and colleagues are used at MPIK for this purpose. Once sufficiently cold inside the laser cooled ion ensemble, the HCIs crystallize as well, and can be stored in various configurations.

Such ion pairs form the basis for quantum clocks and quantum logic spectroscopy, a technique developed by Piet Schmidt, the PTB group leader during his stay at Nobel laureate Dave Wineland's laboratory at NIST (Boulder, USA). Here, the "spectroscopy ion" provides a high-precision optical transition used to keep the pace of the clock at 17 decimal digits accuracy.

It is quantum mechanically linked to the "logic ion" which serves both for the cooling and readout of the spectroscopy ion: laser pulses enable the fluorescing logic ion to feel the quantum state of its nearly undetectable neighbour and changes strongly its own fluorescence yield according to the excitation of the other.

Jose Crespo Lopez-Urrutia explains with an analogy: "In this quantum married couple, the ions feel everything together, but whilst one of the partners cannot talk at all, the other one talks a lot. You then simply ask the talkative one."

The efficient cooling of trapped HCIs opens up new fields in laser spectroscopy: precision tests of quantum electrodynamics, measurement of nuclear properties, and laboratory astrophysics. HCIs are rather insensitive to thermal radiation shifts and other systematic effects that could make a clock imprecise, and thus promise future applications for novel optical clocks using quantum logic spectroscopy.

The ultimate goal of the MPIK-PTB collaboration will be to test the time dependence of natural constants such as the fine structure constant a, which determines the strength of electromagnetic interaction.

For laser spectroscopy, theory predicts that the most sensitive atomic species with respect to a variation is 17-times ionized iridium. In preparation for these future studies, a new highly stable laser system will be installed by the PTB at MPIK to demonstrate the technique with the better known Ar13+ first. And the young scientists seem very eager to start playing with this tool and their novel cooling method.

Original paper: Coulomb crystallization of highly charged ions; L. Schmoger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, J. R. Crespo Lopez-Urrutia Science, March 13 2015

 

 

Quantum mechanic frequency filter for atomic clocks

 
‎27 ‎March ‎2015, ‏‎04:12:54 AMGo to full article
Copenhagen, Denmark (SPX) Mar 13, 2015 - Atomic clocks are the most accurate clocks in the world. In an atomic clock, electrons jumping from one orbit to another decides the clock's frequency. To get the electrons to jump, researchers shine light on the atoms using stabilised laser light. However, the laser light has to have a very precise frequency to trigger very precise electron jumps. It is however challenging to get the laser light frequency ultra precise - there will always be a little 'noise'.

Now researchers from the Niels Bohr Institute have developed a method that reduces the noise so that it is up to 100 times quieter. The results are published in the scientific journal Physical Review Letters.

The atoms in the atomic clock are made up of strontium gas, kept in a vacuum chamber. Using magnetic fields and precise beams of laser light (blue light), the atoms are cooled down to near absolute zero, minus 273 degrees Celsius, where it is maintained.

The electrons are located in certain orbits around the nucleus and each orbit has one energy level. By now flashing the strontium atoms with laser light (red light), the electrons get a higher energy level and jump from one orbit to the next, but they immediately jump right back to their normal orbit. When you then shine the light on the strontium atoms, the electrons keep jumping back and forth in a classical sense and this constitutes the pendulum in the atomic clock.

An atomic clock is now so precise that it only loses one second every 300 million years, but we are working to make it even more precise and this has great potential, including for navigation and space based optical technology for exploration of the universe. The problem with making it more precise is controlling the laser light, so that the light has exactly the wavelength that hits the atoms' electrons and gets them to oscillate very precisely and very accurately.

Solves noise problems
"The laser light is stabilised, but it fluctuates a bit and creates 'noise'. Since there are several wavelengths at the same time due to the noise, we send the light via a mirror to a 'resonator', which is two mirrors joined together so that it allows some waves to pass, while the rest disappear.

So it is a sorting mechanism so that the laser light wavelengths become more precise. So, everyone should be happy, but the mirrors fluctuate slightly - simply because the atoms in the mirror vibrate and this puts some limitations on the stability that we could not get rid of. So we said - why don't we try to change our mindset and turn the whole thing upside down," explains Jan Thomsen, associate professor and head of the research group, Ultra Cold Atoms at the Niels Bohr Institute at the University of Copenhagen.

And so they did - turned it all upside down. Instead of trying to further stabilise the mirrors, they decided to completely ignore the vibrations. They decided to put 'something' between the laser light and the resonator's two mirrors. This 'something' would act as a filter.

The filter consisted of a vacuum chamber with ultra cold strontium atoms between the two mirrors. Strontium is a very 'demanding' atom, which must have a very specific wavelength in order to react with the light. The light is now sent back and forth between the two mirrors and even though the two mirrors vibrate a little due to the temperature in the room, the light does not care, because it is primarily the cold atoms that sort the wavelengths.

"The method is simple, but effective and the result is that the laser beam is much more precise and stable and the noise is reduced by up to 100 times. So we have developed a technique that can create an ultra-precise laser beam using a quantum frequency filter," explains Jan Thomsen, who points out that the technique could be used to make atomic clocks more precise than until now and in a much simpler way than before.

Article

 

 

Physicists propose new classification of charge density waves

 
‎27 ‎March ‎2015, ‏‎04:12:54 AMGo to full article
New Orleans LA (SPX) Mar 12, 2015 - LSU Professors in the Department of Physics and Astronomy Ward Plummer and Jiandi Zhang, in collaboration with their colleagues from the Institute of Physics, Beijing, China, have published a paper in the Proceedings of the National Academy of Sciences titled "Classification of Charge Density Waves based on their Nature." This work is a result of a collaboration funded by the Chinese Academy of Sciences.

Charge Density Waves, or CDWs, are observed in many solids, especially in low-dimensional systems.

The existence of CDWs was first predicted in the 1930s by Sir Rudolf Peierls, who prophesied that they would exist in an ideal one-dimensional (1-D) chain of atoms, lowering the energy of the system and driving a reconstruction of the lattice. The 1940 paper by Frisch and Peierls described how one could construct an atomic bomb from a small amount of uranium-235.

In 1959, Walter Kohn, who received the Nobel Prize in 1998, pointed out that the origin of a CDW in the Peierls' picture would result in what is now known as a "Kohn Anomaly," a simultaneous softening of coherent lattice vibrations, for example, phonon softening.

This simple textbook picture of the origin of CDWs does not seem to be correct in most if not all materials.

Therefore, Plummer and Zhang propose a new classification of CDWs based upon their nature.

 

 

Particle jets reveal the secrets of the most exotic state of matter

 
‎23 ‎March ‎2015, ‏‎03:35:15 PMGo to full article
Cracow, Poland (SPX) Mar 12, 2015 - Shortly following the Big Bang, the Universe was filled with a chaotic primordial soup of quarks and gluons, particles which are now trapped inside of protons and neutrons. Study of this quark-gluon plasma requires the use of the most advanced theoretical and experimental tools.

Physicists from the ATLAS experiment at the Large Hadron Collider (LHC) has taken one crucial step towards a better understanding of the plasma and its properties, and recently published the results of their latest analysis.

When the LHC accelerator at the world's largest laboratory in CERN, Geneva, collided two lead ions travelling at nearly the speed of light, for a fraction of a second ordinary matter was transformed into the most exotic state of matter known to physics: quark-gluon plasma.

Analysis of the streams of particles penetrating the plasma has led to new findings about the properties of the plasma, and was recently published in the prestigious journal Physical Review Letters by the international team of physicists working at the ATLAS detector.

Immediately following the Big Bang and the formation of space-time, the Universe was filled with matter of extraordinary properties. Quarks and gluons, today only found bound within protons and neutrons, bounced about freely, comprising a homogenous 'soup'. This exceptional state of matter, appearing only at temperatures of billions of degrees, has been recreated by physicists at the LHC accelerator by colliding heavy lead ions.

Study of the quark-gluon plasma poses an enormous challenge. It appears only rarely during collisions, in extremely minute quantities, and then only for a fraction of a second.

It immediately begins to expand under its own pressure, rapidly cools and transforms itself into an avalanche of ordinary particles. Modern physics has no tools at its disposal to directly observe quarks and gluons. We cannot simply proceed with the usual methods of measurement, like inserting a thermometer into the plasma and waiting a few minutes for the results. Much more refined methods are needed.

"Fortunately detectors like the ATLAS detector have suceeded in recording the decay products of particles which have interacted in the quark-gluon plasma. By carefully analysing the properties of those particles, we can come to guarded conclusions about the features of the plasma," says Prof. Barbara Wosiek of the Institute of Nuclear Physics of the Polish Academy of Sciences in Krakow, Poland, who coordinated and approved the analysis of data gathered by the ATLAS detector in 2011. The analysis was performed by a team from Columbia University.

Most of the information we have on the quark-gluon soup is provided by particles that disperse sideways as the result of a collision. As they move in this specific direction, crosswise to the initial direction of flight of the lead nuclei, it makes it relatively easy to distinguish them from thousands of other particles and assures that they resulted from the early stage of the collision.

If so, immediately after the collision they had to traverse through the quark-gluon cloud, to then collapse into a concentrated narrow stream of particles, known as jets.

"These initially produced particles lose energy while going through the hot, dense plasma soup, which leads to extinguishing the high-energy jets. Through our analysis we go about reconstructing jets of an extremely high energy level, reaching 400 gigaelectronvolts", adds Prof. Wosiek.

After gathering the data on the reconstructed jets in the collision of lead nuclei, the team of physicists can correlate and compare the results with those obtained from proton-proton collisions. The idea behind such a comparison is quite simple. From a precise enough theoretical consideration it is expected that quark-gluon plasma will not arise in a proton-proton collision.

In turn, theoretical models of heavy ions in collision predict the formation of dense plasma in a head-on ion-ion collision of extremely high energy. Comparison of results from the data analysis of both types of collisions enables evaluation of how the jets are disturbed by the presence of plasma.

"In collisions of the lead nuclei we recorded up to half the number of jets as in the proton-proton collisions. This indicates that the particles ensuing from the intial collision lose energy as they interact with the plasma, and the high-energy jets are thus extinguished. It is an important result, because it allows us to discard some of the theoretical models of quark-gluon plasma which do not provide for such a high rate of suppression", explains Prof. Wosiek.

The ATLAS detector, built from the start with the help of Polish institutions, including the Institute of Nuclear Physics, is an extraordinarily sophisticated instrument the size of a multi-storey building. The data it collects on particle collisions flows through over one hundred million electronic channels and during a typical measurement 99% of them work properly.

Studies of lead ion collisions are only one element of the research undertaken by the international group of scientists experimenting at the LHC accelerator. The main research programme is carried out with proton-proton collisions to put the current theory of particle physics, the Standard Model, to the test, as well as to explore phenomena going beyond the Standard Model.

The most spectacular success of the physicists working on the ATLAS and CMS detectors at the LHC has been the discovery, after a half-century search, of the elusive and now famous Higgs boson.

"Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions..."; G. Aad et al. (ATLAS Collaboration); Physical Review Letters 114, 072302; DOI

 

 

Breakthrough in particle control creates special half-vortex rotation

 
‎23 ‎March ‎2015, ‏‎03:35:15 PMGo to full article
Glasgow, UK (SPX) Mar 05, 2015 - A breakthrough in the control of a type of particle known as the polariton has created a highly specialised form of rotation.

Researchers at the Universities of Strathclyde and Pittsburgh, and Princeton University, conducted a test in which they were able to arrange the particles into a 'ring geometry' form in a solid-state environment. The result was a half-vortex in a 'quantised rotation' form.

This experiment had previously been possible only with the use of ultra-cold atoms, a fraction of a degree above absolute zero, but new techniques enabled the researchers to perform the test at higher temperatures. This made for a simpler, more efficient system which could feed into research for new technologies.

Professor Andrew Daley, of Strathclyde's Department of Physics, was part of the research team and worked on the underlying model of the experiment, which was performed in Pittsburgh.

He said: "This type of controlled experiment is fundamental science but also has applications in quantum technology; much of our research revolves around controlling and understanding these quantum systems. This type of research led in the past to the understanding of building a transistor or a laser.

"Fringes were seen across the entire image of the ring we created, showing that we were controlling the polaritons in a coherent way and that they were displaying collective behaviour, as opposed to behaving as individuals. We were then able to demonstrate unusual states where the particles rotated in the ring at rates that were quantised. The phenomena we observed, known as half-vortices, are peculiar to situations where two different kinds of particles rotate in a superfluid - that is, the particles also must flow with no resistance.

"In this experiment, the polaritons had a much longer lifetime than in previous experiments, which made this collective behaviour possible. The ring made in our work can be created relatively easily in solid-state systems that can operate up to room temperature; this opens the door to all kinds of other superfluid light effects, which could have applications in optical communications."

 

 

First scientific publication from data collected at NSLS-II

 
‎23 ‎March ‎2015, ‏‎03:35:15 PMGo to full article
Upton NY (SPX) Mar 05, 2015 - Just weeks after the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy Office of Science User Facility at Brookhaven National Laboratory, achieved first light, a team of scientists at the X-Ray Powder Diffraction (XPD) beamline tested a setup that yielded data on thermoelectric materials.

The work was part of the commissioning activities for the XPD beamline, a process that fine-tunes the settings of beamline equipment to ready the facility for first scientific commissioning experiments in mid-March on its way to full user operations later in the year.

The work was published online in the scientific journal Applied Physics Letters - Materials. To test the optical performance and components of the beamline, the XPD scientists put a material in the path of the x-ray beam and attempted to characterize its structure as the best way to identify and fix possible flaws or aberrations that the instrument could have caused.

"Our colleagues at NSLS-II were commissioning the XPD beamline and we discussed the best sample for the instrument tuning, something that was going to be straightforward to measure. We realized we could use a sample that was also of scientific interest. It was one of the first things that was put in an NSLS-II beam shortly after the XPD team first opened the shutter," said Simon Billinge, a Brookhaven Lab physicist who co-authored the paper.

"We were lucky. The sample gave valuable information allowing the beam to be tuned, but it also yielded an important scientific result."

That result revealed information about the relationship between the atomic structure of ruthenium diselenide (RuSe2) and its thermoelectric properties. Cedomir Petrovic, a Brookhaven Lab condensed matter physicist, was inspired to study diselenide because of its close chemical relationship to iron diantimonide, the material holding the world record for its thermoelectric power factor.

Thermoelectric materials hold promise for converting waste heat to electricity, as well as for solid-state refrigerators when worked in reverse. Good thermoelectric materials have high power factors and low thermal conductivities.

The power factor is a product of thermopower and electrical conductivity. Petrovic reasoned that the little-studied RuSe2 compound would also have a high thermopower - and it did. But it also had a low electrical conductivity, making it less than ideal for real-world applications, and the NSLS-II data showed why.

When you place a temperature gradient across thermoelectric materials- with one end of the material hotter than the other - electrons at the warm end heat up and gain kinetic energy, eventually migrating toward the cool end. It's similar to a battery with a positive and negative end; the flow of electrons generates a voltage.

The power factor measures how well this happens. If the material also conducts heat well, the cool end will warm up to match the hotter end and the flow will stop. Therefore, a good thermoelectric material has a high power factor but low thermal conductivity.

Petrovic's hunch that RuSe2 would have a high thermopower was borne out, but the power factor was limited by the material's low electrical conductivity. Milinda Abeykoon, who is part of the XPD team carrying out the commissioning, put the sample of this material in the beam to help the team find out why the electrical conductivity was low.

The x-rays revealed how the atomic structure of ruthenium diselenide differs from iron antimony. In the latter, picture two pyramids with square bases that share an edge to make up the crystal structure.

With ruthenium diselenide, it's not the bases that share common edges but the vertices, or corners, of these structures that touch. That small change in orientation means there are fewer channels the electrons can flow through, resulting in the low conductivity and the modest power factor, despite the good thermopower.

"Now that we understand this, we will explore ways to improve the thermoelectric properties of RuSe2, but we will have to concentrate on lowering the thermal conductivity while controlling any resulting defects and without introducing impurities. This will have to be done carefully, though, said Petrovic. "We need to find a way of decreasing or eliminating the thermal conductivity while maintaining the high thermopower."

Billinge adds, "We need a more fundamental understanding of how the thermoelectric properties come about. If we can study more new materials such as RuSe2 that are similar in some ways and different in others, we can tease out, or at least narrow down, what factors give materials their good thermoelectric properties."

XPD is designed for in situ and in operando studies of materials, so scientists can explore materials as they function under real operating conditions.

"It took me and my team many years to transform our conceptual ideas into a working state-of-the-art instrument," said Eric Dooryhee, who led the design and construction of XPD.

"However, it is a testament to the dedication, effort and planning of the entire NSLS-II team---from the scientists, engineers, technicians and procurement and administrative staff through the numerous support teams to the specialists overseeing our safety that it all came together so smoothly. There is some magic to see this decade-long process deliver a very intense and stable beam right to the sample so quickly after turning on the machine.

"There is a real sense of pride here in how well all that work is paying off. As soon as we could safely stabilize and optimize the x-ray beam in the experimental endstation, we could not wait to benchmark the instrument with a real-world sample and see XPD address its first science case, which promises to be first of a long series."

The commissioning data were collected while NSLS-II was operating at just 5 milliamps of ring-current; NSLS-II is designed to provide 100 times more current, and ultrabright coherent x-ray beams.

"As the power of NSLS-II ramps up, we will eventually put a complete, operating, thermoelectric device in the XPD beam and watch how the structure changes in response to voltage and temperature changes," said Billinge. That's what's going to be possible with the very high brilliance of the beam that we'll have at NSLS-II when we have the full capability of the machine."

 

 

Pennies reveal new insights on the nature of randomness

 
‎23 ‎March ‎2015, ‏‎03:35:15 PMGo to full article
Princeton NJ (SPX) Mar 06, 2015 - The concept of randomness appears across scientific disciplines, from materials science to molecular biology. Now, theoretical chemists at Princeton have challenged traditional interpretations of randomness by computationally generating random and mechanically rigid arrangements of two-dimensional hard disks, such as pennies, for the first time.

"It's amazing that something so simple as the packing of pennies can reveal to us deep ideas about the meaning of randomness or disorder," said Salvatore Torquato, professor of chemistry at Princeton and principal investigator of the report published on December 30 in the journal Proceedings of the National Academy of Sciences.

In two dimensions, conventional wisdom held that the most random arrangements of pennies were those most likely to form upon repeated packing, or in other words, most "entropically" favored. But when a group of pennies are rapidly compressed the most probable states are actually highly ordered with small imperfections-called a polycrystalline state.

"We're saying that school of thought is wrong because you can find much lower density states that have a high degree of disorder, even if they are not seen in typical experiments," Torquato said.

Torquato and coworkers proposed that randomness should be judged from the disorder of a single state as opposed to many states. "It's a new way of searching for randomness," said Morrel Cohen, a senior scholar at Princeton and the editor assigned to the article.

Using a computer algorithm, the researchers produced so-called maximally random, jammed (rigid) states as defined by a set of "order metrics." These measurements reflect features of a single configuration, such as the fluctuations of density within a system and the extent to which one penny's position can be used to predict another's.

The algorithm generated random states that have never been seen before in systems with up to approximately 200 disks. Theoretically, these maximally random states should exist for even larger systems, but are beyond the computational limits of the program.

These findings hold promise especially for the physics and chemistry of surfaces. Randomly dispersed patterns can be relayed to a 3D printer to create materials with unique properties. This may be desirable in photonics-analogous to electronics, but with photons instead of electrons-where the orientation of particles affects light's ability to travel through a material.

This work also provides a tool for measuring degrees of order that may be applied to broadly to other fields. For example, the degree of disorder in the spatial distribution of cancer cells versus healthy cells could be measured and compared for possible biological links. The next challenge in this line of research will be for experimentalists to replicate these findings in the laboratory.

 

 

Electrons in slow motion

 
‎23 ‎March ‎2015, ‏‎03:35:15 PMGo to full article
Rome, Italy (SPX) Mar 10, 2015 - A process that is too fast to be measured and analysed. Yet a group of international scientists did not lose heart and conceived a sort of highly sophisticated moviola film-editing system, which allowed them to observe - for the first time in a direct manner - an effect underlying high-temperature conductivity. The results of their work have been published in Nature Physics on Monday 9 March 2015.

Superconductors have properties that make them potentially very interesting for technology (examples of application include magnetic levitation trains). The road to a true application of the extraordinary properties of these superconductors is, however, blocked by the fact that the "classic" ones work at extremely low temperatures close to absolute zero, and therefore impracticable.

Copper oxide-based superconductors, thanks to a higher working temperature, are more promising but the possibility of synthesizing superconductors at ambient temperature remains a distant goal. The main barrier is the lack of understanding of the mechanism enabling copper oxides to turn into superconductors.

One of the main problems is understanding whether the electron interactions inside the material are direct and instantaneous or mediated by some "delayed" interaction. To answer this question, we need to look at the process "in real life", but given its unusual rapidity, this is far from easy.

"The solution we devised is based on the use of ultrafast light pulses, lasting 10 femtoseconds, that is, 10 million billionths of a second", explains Claudio Giannetti, of the Catholic University of the Sacred Heart, who coordinated the research.

"To be able to carry out these measurements our laboratories developed a unique experimental apparatus capable of producing, utilizing and measuring light pulses of different colours that last less than 10 femtoseconds", adds Giulio Cerullo, head of the ultrafast spectroscopy laboratories of the Department of Physics of Milan Polytechnic.

The method developed resembles that of "high-speed photography" invented by Eadweard Muybridge more than 100 years ago.

"The famous stroboscopic images, or motion pictures, can give an idea of what we did", explains Massimo Capone, researcher at SISSA in Trieste, and among the authors of the paper.

"Muybridge, a bit like us, would take photographs of fast-moving objects, breaking down their motion into many still frames before creating those beautiful images (that have become icons) that provide a reconstruction of the path of motion. We did something very similar, in a tiny temporal (and spatial) dimension, using infinitely short light pulses as obturators, to observe ultrafast changes in the properties of a superconductor".

The scientists applied the technique to different families of high-temperature copper oxide superconductors, thereby succeeding in measuring what they define as the "fastest slow process" in a solid, and their findings support the hypothesis that electron interactions in these superconductors are mediated by the spin of electrons.

More in detail...

"In general, electron interactions in a solid can be divided into direct interactions, which are virtually instantaneous, and "delayed" interactions, which occur when the electrons interact with other particles (bosons deriving from excitation of the ion network or from magnetic excitations)", explains Capone. "These latter processes are thought to be fundamental for superconductivity to occur, as they form the 'glue' that holds the electrons together in the so-called 'Cooper pairs' underlying the superconducting phenomenon itself".

"To date, similar experiments carried out with a lower temporal resolution succeeded in accessing only the 'slow' processes related to electron interactions with the vibrations of the crystal network formed by ions (phonons)", explains Cerullo. "In this study, for the first time we measured electron pairing with another family of excitations linked to electron spin and magnetism".

"This pairing", concludes Giannetti, "had so far been impossible to access with experimental analyses because it occurs in a timeframe of only 10 femtoseconds. Our technique and its original utilization have opened a new window on ultrafast processes in high-temperature superconductors".

 

 

Why isn't the universe as bright as it should be?

 
‎23 ‎March ‎2015, ‏‎03:35:15 PMGo to full article
Boston MA (SPX) Mar 05, 2015 - A handful of new stars are born each year in the Milky Way, while many more blink on across the universe. But astronomers have observed that galaxies should be churning out millions more stars, based on the amount of interstellar gas available.

Now researchers from MIT and Michigan State University have pieced together a theory describing how clusters of galaxies may regulate star formation. They describe their framework this week in the journal Nature.

When intracluster gas cools rapidly, it condenses, then collapses to form new stars. Scientists have long thought that something must be keeping the gas from cooling enough to generate more stars - but exactly what has remained a mystery.

For some galaxy clusters, the researchers say, the intracluster gas may simply be too hot - on the order of hundreds of millions of degrees Celsius. Even if one region experiences some cooling, the intensity of the surrounding heat would keep that region from cooling further - an effect known as conduction.

"It would be like putting an ice cube in a boiling pot of water - the average temperature is pretty much still boiling," says Michael McDonald, a Hubble Fellow in MIT's Kavli Institute for Astrophysics and Space Research. "At super-high temperatures, conduction smooths out the temperature distribution so you don't get any of these cold clouds that should form stars."

For so-called "cool core" galaxy clusters, the gas near the center may be cool enough to form some stars. However, a portion of this cooled gas may rain down into a central black hole, which then spews out hot material that serves to reheat the surroundings, preventing many stars from forming - an effect the team terms "precipitation-driven feedback."

"Some stars will form, but before it gets too out of hand, the black hole will heat everything back up - it's like a thermostat for the cluster," McDonald says. "The combination of conduction and precipitation-driven feedback provides a simple, clear picture of how star formation is governed in galaxy clusters."

Crossing a galactic threshold
Throughout the universe, there exist two main classes of galaxy clusters: cool core clusters - those that are rapidly cooling and forming stars - and non-cool core clusters - those have not had sufficient time to cool.

The Coma cluster, a non-cool cluster, is filled with gas at a scorching 100 million degrees Celsius. To form any stars, this gas would have to cool for several billion years. In contrast, the nearby Perseus cluster is a cool core cluster whose intracluster gas is a relatively mild several million degrees Celsius. New stars occasionally emerge from the cooling of this gas in the Perseus cluster, though not as many as scientists would predict.

"The amount of fuel for star formation outpaces the amount of stars 10 times, so these clusters should be really star-rich," McDonald says. "You really need some mechanism to prevent gas from cooling, otherwise the universe would have 10 times as many stars."

McDonald and his colleagues worked out a theoretical framework that relies on two anti-cooling mechanisms.

The group calculated the behavior of intracluster gas based on a galaxy cluster's radius, mass, density, and temperature. The researchers found that there is a critical temperature threshold below which the cooling of gas accelerates significantly, causing gas to cool rapidly enough to form stars.

According to the group's theory, two different mechanisms regulate star formation, depending on whether a galaxy cluster is above or below the temperature threshold. For clusters that are significantly above the threshold, conduction puts a damper on star formation: The surrounding hot gas overwhelms any pockets of cold gas that may form, keeping everything in the cluster at high temperatures.

"For these hotter clusters, they're stuck in this hot state, and will never cool and form stars," McDonald says. "Once you get into this very high-temperature regime, cooling is really inefficient, and they're stuck there forever."

For gas at temperatures closer to the lower threshold, it's much easier to cool to form stars. However, in these clusters, precipitation-driven feedback starts to kick in to regulate star formation: While cooling gas can quickly condense into clouds of droplets that can form stars, these droplets can also rain down into a central black hole - in which case the black hole may emit hot jets of material back into the cluster, heating the surrounding gas back up to prevent further stars from forming.

"In the Perseus cluster, we see these jets acting on hot gas, with all these bubbles and ripples and shockwaves," McDonald says. "Now we have a good sense of what triggered those jets, which was precipitating gas falling onto the black hole."

On track
McDonald and his colleagues compared their theoretical framework to observations of distant galaxy clusters, and found that their theory matched the observed differences between clusters. The team collected data from the Chandra X-ray Observatory and the South Pole Telescope - an observatory in Antarctica that searches for far-off massive galaxy clusters.

The researchers compared their theoretical framework with the gas cooling times of every known galaxy cluster, and found that clusters filtered into two populations - very slowly cooling clusters, and clusters that are cooling rapidly, closer to the rate predicted by the group as a critical threshold.

By using the theoretical framework, McDonald says researchers may be able to predict the evolution of galaxy clusters, and the stars they produce.

"We've built a track that clusters follow," McDonald says. "The nice, simple thing about this framework is that you're stuck in one of two modes, for a very long time, until something very catastrophic bumps you out, like a head-on collision with another cluster."

The researchers hope to look deeper into the theory to see whether the mechanisms regulating star formation in clusters also apply to individual galaxies. Preliminary evidence, he says, suggests that is the case.

"If we can use all this information to understand why or why not stars form around us, then we've made a big step forward," McDonald says.

 

 

The first ever photograph of light as a particle and a wave

 
‎23 ‎March ‎2015, ‏‎03:35:15 PMGo to full article
Lausanne, Switzerland (SPX) Mar 03, 2015 - Quantum mechanics tells us that light can behave simultaneously as a particle or a wave. However, there has never been an experiment able to capture both natures of light at the same time; the closest we have come is seeing either wave or particle, but always at different times.

Taking a radically different experimental approach, EPFL scientists have now been able to take the first ever snapshot of light behaving both as a wave and as a particle. The breakthrough work is published in Nature Communications.

When UV light hits a metal surface, it causes an emission of electrons. Albert Einstein explained this "photoelectric" effect by proposing that light - thought to only be a wave - is also a stream of particles. Even though a variety of experiments have successfully observed both the particle- and wave-like behaviors of light, they have never been able to observe both at the same time.

A new approach on a classic effect
A research team led by Fabrizio Carbone at EPFL has now carried out an experiment with a clever twist: using electrons to image light. The researchers have captured, for the first time ever, a single snapshot of light behaving simultaneously as both a wave and a stream of particles particle.

The experiment is set up like this: A pulse of laser light is fired at a tiny metallic nanowire. The laser adds energy to the charged particles in the nanowire, causing them to vibrate.

Light travels along this tiny wire in two possible directions, like cars on a highway. When waves traveling in opposite directions meet each other they form a new wave that looks like it is standing in place. Here, this standing wave becomes the source of light for the experiment, radiating around the nanowire.

This is where the experiment's trick comes in: The scientists shot a stream of electrons close to the nanowire, using them to image the standing wave of light. As the electrons interacted with the confined light on the nanowire, they either sped up or slowed down. Using the ultrafast microscope to image the position where this change in speed occurred, Carbone's team could now visualize the standing wave, which acts as a fingerprint of the wave-nature of light.

While this phenomenon shows the wave-like nature of light, it simultaneously demonstrated its particle aspect as well. As the electrons pass close to the standing wave of light, they "hit" the light's particles, the photons.

As mentioned above, this affects their speed, making them move faster or slower. This change in speed appears as an exchange of energy "packets" (quanta) between electrons and photons. The very occurrence of these energy packets shows that the light on the nanowire behaves as a particle.

"This experiment demonstrates that, for the first time ever, we can film quantum mechanics - and its paradoxical nature - directly," says Fabrizio Carbone.

In addition, the importance of this pioneering work can extend beyond fundamental science and to future technologies. As Carbone explains: "Being able to image and control quantum phenomena at the nanometer scale like this opens up a new route towards quantum computing."

 

 

 
 

 

 

***SPECIAL OFFER ***

BUY THE DVD

&

GET THE BOOK

ONLY

PRICE R199.00

THIS LINK ONLY

 

 

 

 

Beyond Perception - DVD

by Chuck Missler  

 

 

DVD

PRICE R 159.00

 

Media Type: DVD
Published 20-Sep-2010
Published by Koinonia House
KHID#: DVD84
Why do scientists now believe we live in a 10-dimensional universe?

Has physics finally reached the very boundaries of reality?

There seems to be evidence to suggest that our world and everything in it are only ghostly images; projections from a level of reality so beyond our own that the real reality is literally beyond both space and time. The main architect of this astonishing idea is one of the world's most eminent thinkers- physicist David Bohm, a protege of Einstein's. Earlier, he noticed that, in plasmas, particles stopped behaving like individuals and started behaving as if they were part of a larger and inter connected whole. He continued his work in the behavior of oceans of these particles, noting their behaving as if they know what each on the untold trillions of individual particles were doing.

This briefing pack DVD comes with:
-two mp3 audio files
-one notes file in pdf format

This DVD includes notes in PDF format and MP3 files.

Encoding: This DVD will be viewable in other countries WITH the proper DVD player and television set.
Format: Color, Fullscreen
Aspect Ratio: 4:3
Audio Encoding: Dolby Digital 2.0 stereo
Run Time: 2 hour(s)
Number of discs: 1


 
The Beyond Collection 

 

 

      

 

 

 

Price R399.00

 The Collection Includes the 4 DVD'S below

 

 

 

DVD - R159.00

 

 

DVD - R159.00

 

 

DVD - R159.00

 

 

DVD - R159.00

 

If you purchase the 4 discs individually the price will be R636.00

 

 YOU SAVE R 237.00!

Genetics Research Confirms Biblical Timeline

Exciting research from the summer of 2012 described DNA variation in the protein coding regions of the human genome linked to population growth. One of the investigation's conclusions was that the human genome began to rapidly diversify not more than 5,000 years ago.1,2 This observation closely agrees with a biblical timeline of post-flood human diversification. Yet another study, this one published in the journal Nature, accessed even more extensive data and unintentionally confirmed the recent human history described in Genesis.3

Differences in human DNA can be characterized across populations and ethnic groups using a variety of techniques. One of the most informative genetic technologies in this regard is the analysis of rare DNA variation in the protein coding regions of the genome. Variability in these regions is less frequent than the more numerous genetic differences that occur in the non-coding regulatory regions. Researchers can statistically combine this information with demographic data derived from population growth across the world to generate time scales related to human genetic diversification.4

What makes this type of research unique is that evolutionary scientists typically incorporate hypothetical deep time scales taken from the authority of paleontologists or other similar deep-time scenarios to calibrate models of genetic change over time. Demographics-based studies using observed world population dynamics do not rely on this bias and are therefore more accurate and realistic.

In a 2012 Science report, geneticists analyzed DNA sequences of 15,585 protein-coding gene regions in the human genome for 1,351 European Americans and 1,088 African Americans for rare DNA variation.1,2 This new study accessed rare coding variation in 15,336 genes from over 6,500 humans—almost three times the amount of data compared to the first study.3 A separate group of researchers performed the new study.

The Nature results convey a second spectacular confirmation of the amazingly biblical conclusions from the first study. These scientists confirmed that the human genome began to rapidly diversify not more than 5,000 years ago. In addition, they found significant levels of  variation to be associated with degradation of the human genome, not forward evolutionary progress. This fits closely with research performed by Cornell University geneticist John Sanford who demonstrated through biologically realistic population genetic modeling that genomes actually devolve over time in a process called genetic entropy.5

According to the Bible, the pre-flood world population was reduced to Noah's three sons and their wives, creating a genetic bottleneck from which all humans descended. Immediately following the global flood event, we would expect to see a rapid diversification continuing up to the present. According to Scripture, this began not more than 5,000 years ago. We would also expect the human genome to devolve or degrade as it accumulates irreversible genetic errors over time. Now, two secular research papers confirm these biblical predictions.

References

  1. Tomkins, J. 2012. Human DNA Variation Linked to Biblical Event Timeline. Creation Science Update. Posted on icr.org July 23, 2012, accessed December 31, 2012.
  2. Tennessen, J. et al. 2012. Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes. Science. 337 (6090): 64-69.
  3. Fu, W, et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature. Published online before print, July 13, 2012.
  4. Keinan, A and A. Clark. 2012. Recent Explosive Human Population Growth Has Resulted in an Excess of Rare Genetic Variants. Science. 336 (6082): 740-743.
  5. Sanford, J. C. 2008. Genetic Entropy and the Mystery of the Genome, 3rd ed. Waterloo, NY: FMS Publications.

* Dr. Tomkins is a Research Associate and received his Ph.D. in Genetics from Clemson University.

 

 

What Mean These Stones

 
‎22 ‎May ‎2015, ‏‎10:00:00 AMGo to full article

The poet George Santayana once said, “Those who cannot learn from history are doomed to repeat it.” In the life of every nation, there are “memories” that must be preserved if that nation is to retain an awareness of its unique role among the nations of the world—indeed, among the long list of nations throughout history.

 More...

 

New Fossil Dubbed 'Platypus Dinosaur'

 
‎19 ‎May ‎2015, ‏‎10:00:00 AMGo to full article

It has a bill like a duck, leg spurs like a rooster, lays eggs like a reptile, but has fur like a mammal. Yet all these features elegantly integrate to form the body of a modern platypus. If God created the platypus, then why couldn't He create other creatures that seem to have borrowed parts from other familiar forms? He may have done just that when he made Chilesaurus.

 More...

 

Clever Construction in Rorqual Whales

 
‎14 ‎May ‎2015, ‏‎10:00:00 AMGo to full article

A few years ago, scientists discovered a unique sensory organ in the jaw of a rorqual whale—the world's largest creature. Rorqual whales, which include the blue whale and fin whale, feed by ballooning out folds of tissue that bag gobs of krill from fertile ocean waters. Some of those researchers recently described the unique bungee-cord-like nerve fibers that illustrate clever and intentional design.

 More...

 

 

Still Searching for Geology's Holy Grail

 
‎11 ‎May ‎2015, ‏‎10:00:00 AMGo to full article

The origin of the continental crust continues to baffle secular geologists who often refer to this mystery as the "holy grail of geology." Earth's plates are composed of two distinctly different types of crust: oceanic and continental. Explaining the reason for the unique crust and plates on Earth has been the subject of on-going research and debate for decades. Two recent articles attempt to shed light on the mystery of the continents.

 More...

 

A Cosmic 'Supervoid' vs. the Big Bang

 
‎07 ‎May ‎2015, ‏‎10:00:00 AMGo to full article

In a new paper, scientists have announced the discovery of an enormous region of lower-than-average galaxy density about three billion light-years from Earth. This "supervoid," the largest single structure ever discovered at 1.8 billion light-years across, is newsworthy in its own right. However, it also has implications for the Big Bang model of the universe's origin.

 More...

 

Scientific Suicide

 
‎04 ‎May ‎2015, ‏‎10:00:00 AMGo to full article

The recent cover of New Scientist magazine reads "Belief: They drive everything we do. But our beliefs are built on…nothing." This is an amazing statement by a magazine, supposedly dedicated to science, in that it presents its readers with a philosophical conundrum. How can scientists, who must depend on a strict belief in logic and order, make such a statement?

 More...

 

 

Three-Dimensional DNA Code Defies Evolution

 
‎27 ‎April ‎2015, ‏‎10:00:00 AMGo to full article

Scientists have long been baffled as to what actually tells proteins called transcription factors (TFs) where to bind in the genome to turn genes off and on. However, new research incorporating the three-dimensional shape of DNA has revealed an incredibly complex system of interacting biochemical codes.

 More...

 

Mosasaur Babies: Aren't They Cute?

 
‎20 ‎April ‎2015, ‏‎10:00:00 AMGo to full article

We often hear claims that birds are similar to dinosaurs, but birds and mosasaurs? Mosasaurs were swimming reptiles. How can they be confused with birds? A recent study published in Palaeontology by Yale University's Daniel Field and his colleagues clears up some of this confusion and in the end, illustrates a mosasaur lifecycle of marvelous design.

 More...

 

No Salamander Evolution Evidence, Past or Present

 
‎16 ‎April ‎2015, ‏‎10:00:00 AMGo to full article

Scientists in Portugal unearthed a "super salamander" which, although "weird compared to anything today," is still very much a salamander. The fossilized bones of the six-foot animal were discovered on a hillside dig "chock-full" of bones and declared to originate from the "Upper Triassic" period, some 200 million years ago according to evolutionary dating. But creationists see this as yet another discovery of a created animal that grew to large dimensions in the fertile world before the Flood, and was subsequently buried during the Flood itself.

 More...

 

 

Myths Dressed as Science

 
‎13 ‎April ‎2015, ‏‎10:00:00 AMGo to full article

A recent MSN article claims a fossilized hominid called "Little Foot" found near Johannesburg, South Africa, is approximately 3.67 million years old, as does a similar report in ScienceNews. Both articles provide insufficient detail to make an intelligent evaluation of the method used to arrive at the stated conclusion, and as such that conclusion must be regarded as suspect.

 More...

 

Saturn's Enceladus Looks Younger than Ever

 
‎09 ‎April ‎2015, ‏‎10:00:00 AMGo to full article

The more we learn about Enceladus, the younger it looks. Stated another way, the more that our space probes discover about this fascinating little moon that inhabits Saturn's tenuous E ring, the more challenging it becomes for conventional origins to explain. A new discovery adds to the list of young-looking Enceladus features.

 More...

 

Another Horizontal Gene Transfer Fairy Tale

 
‎06 ‎April ‎2015, ‏‎10:00:00 AMGo to full article

As the genomes of many new creatures rapidly fill the public DNA sequence databases, the problems for the grand evolutionary story are becoming overwhelming. One issue is the fact that different creatures have unique sets of genes specific to their kind with no apparent evolutionary history. To explain this glaring problem, evolutionists have resorted to the myth of pervasive horizontal gene transfer.

 More...

 

 

Dinosaur Moth: An Evolutionary Enigma

 
‎30 ‎March ‎2015, ‏‎10:00:00 AMGo to full article

Scientists discovered an Australian "dinosaur" moth that, if the evolutionary story is to be believed, has undergone virtually no evolution for at least forty million years. They named it Enigmatinea glatzella. The name is quite descriptive, as Enigmatinea means "enigma moth" in Latin. But why is this moth an enigma to evolutionary scientists?

 


  More...

 

 

Twins Provide Peek Into Mankind's Origin

 
‎26 ‎March ‎2015, ‏‎10:00:00 AMGo to full article

Lucy and Maria Aylmer are 18-year-old twins from the United Kingdom. They were born on the same day from the same mother, yet one has light skin and hair, and the other has dark skin and dark, curlier hair. Their unique story illustrates how human-trait variations found around the world could have arisen suddenly in Noah's offspring.

 More...

 

Heads, Evolution Wins--Tails, Creation Loses?

 
‎23 ‎March ‎2015, ‏‎10:00:00 AMGo to full article

Wouldn't two billion years of mutations and changing environments inevitably produce some effects in an organism? After all, in only a quarter of that supposed time, evolutionary processes are said to have transformed fish into people. Mutations supposedly occur nonstop, but the authors of a new paper now say that creature stasis proves evolution.

 More...

 

Spiders Have Always Been Spiders

 
‎19 ‎March ‎2015, ‏‎10:00:00 AMGo to full article

A University of California Berkley graduate student has discovered two beautiful new species of peacock spiders in southeast Queensland, Australia. The student, Madeline Girard, named the two colorful creatures "Sparklemuffin" and "Skeletorus," both of the genus Maratus. Are these splendid specimens highly evolved species or have spiders always been spiders?

 More...

 

 

Live Webcasts March 18 and 22!

 
‎16 ‎March ‎2015, ‏‎10:00:00 AMGo to full article


 


Get a front-row seat to “Science Confirms Biblical Creation” and “Your Origins Matter” in the comfort of your own home as ICR astrophysicist Dr. Jason Lisle shares biblical and scientific truths. Go to ICR.org/webcast at 7:00 p.m. PDT on Wednesday, March 18, and 9:00 or 10:30 a.m. PDT on Sunday, March 22, to view these engaging presentations.

 More...
 

Cancer Research Inadvertently Refutes Evolution

 
‎12 ‎March ‎2015, ‏‎10:00:00 AMGo to full article

How did nature supposedly transform a single-cell organism into all the varieties of land-walking animals in our world today? Textbook explanations invoke natural selection of beneficial mutations across unimaginable time, with a bit of help from “junk DNA” and heaps of serendipitous chance. Though it was not intended as a test of evolution, a new cancer research discovery jeopardizes these unfounded evolutionary assumptions.

 More...

 

 

Lids, Lashes, and Lunar Rovers

 
‎09 ‎March ‎2015, ‏‎10:00:00 AMGo to full article

A recent discovery indicates our eyelashes must measure at just the right length to function properly. Scientists at the Georgia Institute of Technology studied 22 mammal lash lengths and reported that, from giraffes to hedgehogs, lash length was of "optimum" length—about one-third of the width of the given mammal's eye.

 More...

 

Manganese Nodule Discovery Points to Genesis Flood

 
‎05 ‎March ‎2015, ‏‎10:00:00 AMGo to full article

Scientists recently discovered a large batch of manganese nodules on the floor of the Atlantic Ocean. These metallic pellets provide strong evidence that most seafloor sediments were deposited rapidly, not slowly and gradually over millions of years. Are these nodules evidence of the Genesis Flood?

 More...

 

RNA Editing: Biocomplexity Hits a New High

 
‎02 ‎March ‎2015, ‏‎10:00:00 AMGo to full article

When the workings of the genome were first being discovered, the central evolutionary dogma of molecular biology claimed that genetic information passes consistently from DNA to RNA to proteins. Now we know that RNA messages can be altered by a variety of mechanisms, and a new study in squid genetics has vaulted one of these processes—called RNA editing—to an unprecedented level of biocomplexity.

 More...

 

Secular Study: No Big Bang?

 
‎23 ‎February ‎2015, ‏‎10:00:00 AMGo to full article

Christians who believe the universe began billions of years ago often point to the Big Bang model to try and verify a creation-like beginning. But a new origin of the universe model offers an "everlasting universe" and dismisses the whole idea of a Big Bang. Why would scientists even think to challenge a long-held concept like the Big Bang unless they saw some deal-breaking weaknesses in it?

 More...

 

 

Honey Bee Orphan Genes Sting Evolution

 
‎19 ‎February ‎2015, ‏‎10:00:00 AMGo to full article

A key type of rogue genetic data called orphan genes has just been reported in honey bees. Orphan genes conflict with ideas about genome evolution, and they are directly linked with the evolutionary enigma of phenotypic novelty, unique traits specific to a single type of creature.

 More...

 

Out of Babel--Not Africa

 
‎16 ‎February ‎2015, ‏‎10:00:00 AMGo to full article

Newly published research combining genetic, language, and demographic data challenges the idea of a single lineage of languages and human populations evolving out of Africa. Instead, the data supports the idea that multiple people groups have independent origins—a condition one would predict if the confusion of languages at the Tower of Babel happened as described in the Bible.

 More...

 

Big Bang Evidence Retracted

 
‎12 ‎February ‎2015, ‏‎10:00:00 AMGo to full article

In March 2014, the BICEP2 radio astronomy team announced purported direct evidence of cosmic inflation, an important part of the modern Big Bang model for the universe’s creation. This announcement was front-page news all over the world. However, these scientists recently submitted a paper for publication that effectively retracts their breakthrough claim, acknowledging that their earlier results were spurious. They admitted their “evidence” was actually an artifact of dust within our own galaxy.

 More...

 

Snakes Have Always Been Snakes

 
‎09 ‎February ‎2015, ‏‎10:00:00 AMGo to full article

It's an old story. An animal or plant is discovered in sedimentary rocks by paleontologists and it pushes the organism's origin further back by many millions of years. This time snakes are the subject of a recent, unexpected discovery that pushes their first appearance back an additional 65 million years.

 More...

 

A New Antibiotic?

 
‎05 ‎February ‎2015, ‏‎10:00:00 AMGo to full article

Antibiotics serve as some of the most effective tools modern medicine has to offer. These amazing chemicals save many lives by targeting specific and essential processes in pathogenic bacteria—but antibiotics are losing their magic touch. Their failure to beat back new strains of antibiotic-resistant germs motivates researchers to design or discover new antibiotics. Scientists now reveal reasons why their new discovery brings hope to those hunting for better germ killers.

 More...

 

The frilled shark . . . is still a shark

 
‎02 ‎February ‎2015, ‏‎10:00:00 AMGo to full article

On January 21, 2015 the news broke—an Australian fisherman hooked a "living fossil." Called the frilled (or frill) shark, this creature was thought to be 80 million years old. It looks mighty frightening, but is it truly "prehistoric" and somehow linked to shark evolution?

 More...

 

 

Encore Presentation of Patterns of Evidence: Exodus

 
‎26 ‎January ‎2015, ‏‎10:00:00 AMGo to full article

The Exodus is one of the best-known narratives in the Bible. It details the Israelites' escape from Egypt after centuries of slavery, Moses' rise to leadership, the devastating plagues on Egypt, and the miraculous Red Sea crossing. Yet many archaeologists and historians insist there is no evidence that the biblical Exodus ever occurred. This debate is the subject of the award-winning documentary Patterns of Evidence: Exodus that has an encore presentation this Thursday.

 More...